
www.manaraa.com

13Using I/O Automata for Developing Distributed SystemsStephen J. GarlandMIT Laboratory for Computer S
ien
e,545 Te
hnology Square, Cambridge, MA 02139garland�l
s.mit.eduNan
y Lyn
hMIT Laboratory for Computer S
ien
e,545 Te
hnology Square, Cambridge, MA 02139lyn
h�theory.l
s.mit.eduAbstra
tThis paper des
ribes a new experimental programming language, IOA, for modelingand implementing distributed systems, plus designs for a set of tools to supportIOA programming. The language and tools are based on the I/O automaton modelfor rea
tive systems, whi
h has been used extensively for resear
h on distributedalgorithms. The language supports stru
tured modeling of distributed systems usingshared-a
tion 
omposition and levels of abstra
tion. The tools are intended tosupport system design, several kinds of analysis, and generation of eÆ
ient runnable
ode. 13.1 Introdu
tionDistributed systems are required to provide in
reasingly powerful servi
es, within
reasingly strong guarantees of performan
e, fault-toleran
e, and se
urity. Atthe same time, the networks in whi
h these systems run are growing larger andbe
oming less predi
table. It is no wonder that distributed systems have be
omevery 
omplex.The best approa
h to managing the in
reased 
omplexity of systems involves orga-nizing them in stru
tured ways, viewing them at di�erent levels of abstra
tion, anddesigning them as parallel 
ompositions of intera
ting 
omponents. Su
h stru
turemakes systems easier to understand, build, maintain, and extend, and 
an serve asthe basis for do
umentation and analysis. However, in order to be most useful, thisstru
ture must rest on a solid mathemati
al foundation. This is obviously ne
essaryif the stru
ture is to support formal methods of 
onstru
ting or analyzing systems;however, even without formal methods, a mathemati
al basis is essential for pre
iseunderstanding.One reasonable mathemati
al basis is the I/O automaton model [LT87℄, whi
h has285



www.manaraa.com

286 Garland and Lyn
hbeen used to des
ribe and verify distributed algorithms and to express impossibilityresults (see, for example, [Lyn96℄). Several aspe
ts of this model make it good forsu
h tasks. It is based on set-theoreti
 mathemati
s rather than on a parti
ularlogi
 or programming language. I/O automata are nondeterministi
, whi
h allowssystems to be des
ribed in their most general forms. I/O automata have a simplenotion of external behavior based on sets of tra
es of external a
tions. Moreover, I/Oautomata 
an be 
omposed by identifying external a
tions, in a way that respe
tsexternal behavior, and pairs of automata 
an be related using various forms ofimplementation relations that preserve external behavior. The model supports ari
h set of proof methods, in
luding invariant assertion te
hniques for proving thata property is true in all rea
hable states, forward and ba
kward simulation methodsfor proving that one automaton implements another, and 
ompositional methodsfor reasoning about 
olle
tions of intera
ting 
omponents.Also, the model has been extended to a timed I/O automaton model [LV96℄,whi
h allows modeling of timing aspe
ts of distributed systems, in
luding timingassumptions and performan
e guarantees. Both I/O automata and timed I/O au-tomata 
an be des
ribed using simple guarded-
ommand-style pseudo
ode (see, forexample, [LMWF94, Lyn96℄).Although I/O automata were originally developed for modeling theoreti
al dis-tributed algorithms, in the past few years they have been used to model pra
ti-
al system 
omponents su
h as distributed shared memory servi
es (for example,[FKL98, FGL+99℄), group 
ommuni
ation servi
es [FLS97, DFLS98, HLvR99℄, andstandard 
ommuni
ation proto
ols like TCP [Smi97℄. This work has resolved am-biguities and 
ontributed proofs that systems meet their spe
i�
ations. It has ledto the dis
overy of problems, in
luding logi
al errors in key algorithms in the Or
a[BKT92℄, Horus [vRBM96℄, and Ensemble [HvR96℄ systems. Moreover, it has pro-du
ed I/O automaton pseudo
ode that is 
lose to a
tual system 
ode: for example,some I/O automaton pseudo
ode for the Ensemble system [HLvR99℄ is similar tothe a
tual ML 
ode that appears in the system implementation.Be
ause the model and pseudo
ode have worked well in these 
ase studies, webelieve they 
an be made to play a signi�
ant role in developing real distributedsystems. In this paper, we des
ribe one way this might work.Most of the work done so far using I/O automata has been 
arried out by hand.However, for these methods to play a serious role in system development, they willrequire 
omputer tool support. So far, tool-based work with I/O automata has
onsisted mainly of using intera
tive theorem provers to verify invariant assertionsand simulation relations (for example, [Nip89, SAGG+93, PPG+96, Ar
97℄) forI/O-automaton-based designs. The TAME system [AHS98℄ provides a high-levelinterfa
e to the PVS theorem prover [ORR+96℄ for spe
ifying and proving propertiesof a timed version of I/O automata. Other tool support for I/O automata in
ludesthe Spe
trum programming language and simulator [Gol90℄.



www.manaraa.com

Using I/O Automata for Developing Distributed Systems 28713.2 General Design GuidelinesThe tool support we are 
onstru
ting begins with a simple formal language for mod-eling distributed systems using I/O automata, based on the guarded-
ommand-stylepseudo
ode already in use. Su
h a language should support the system designer inexpressing his/her design at di�erent levels of abstra
tion, starting with a high-levelspe
i�
ation of the required global behavior and ending with a low-level version that
an be translated easily into real 
ode. The language should also allow the designerto de
ompose designs into separable 
omponents with 
learly de�ned external be-havior.This language should be supported by tools providing a

ess to a full range ofvalidation methods, in
luding proof using an intera
tive theorem prover, simulation,and model-
he
king. These tools should allow designers to reason about propertiesof their designs at all levels of abstra
tion, and about relationships between di�erentlevels.However, we would like more than just validation tools: we would also like toolsfor 
onne
ting veri�ed designs to runnable distributed 
ode. (Our experien
e withsystems like Ensemble suggests that su
h 
onne
tions are feasible.) Su
h toolswould allow 
laims and proofs about designs to be 
arried over automati
ally toreal distributed programs.In parti
ular, we believe that, with some well-
hosen programmer input, real dis-tributed 
ode in a standard programming language like C++, Java, or ML, 
an begenerated automati
ally from low-level I/O-automaton-based designs. The valida-tion tools should be able to ensure that the �nal programs are 
orre
t, subje
t toassumptions about externally provided system 
omponents (for example, 
ommu-ni
ation servi
es). Runnable distributed 
ode has already been generated by handtranslation of some spe
i�
 I/O-automaton-based distributed algorithm des
riptions[Che97, Tau℄.A programming environment based on su
h a language and tools 
ould help math-emati
ians write distributed programs, and help programmers who are not mathe-mati
ians use mathemati
al methods in their work.In this paper, we outline our design for su
h a programming environment anddes
ribe our progress on building a resear
h prototype.As a starting point, we have developed a 
andidate programming language, theIOA language, designed spe
i�
ally to des
ribe I/O automata and their relation-ships. IOA has evolved from the various forms of pseudo
ode used in previous work;it also uses ideas from Spe
trum [Gol90℄. It allows automata to be des
ribed usingtransition de�nitions (guarded 
ommands) 
onsisting of pre
onditions and e�e
ts.It allows expli
it des
ription of nondeterministi
 
hoi
e, 
omposition, and levels ofabstra
tion. It permits both de
larative and imperative system des
riptions. Al-though the IOA language may need to be enhan
ed later to in
rease its expressive



www.manaraa.com

288 Garland and Lyn
hpower, we think it is a good starting point for developing a good programmingenvironment.We have also developed designs for a set of tools for validating and transformingIOA des
riptions and for generating 
ode from IOA des
riptions. We are 
urrentlyre�ning the designs and 
onstru
ting prototypes. Key ideas of the high-level designsinvolve me
hanisms for resolving nondeterminism, support for programming usinglevels of abstra
tion, and integration of externally provided system 
omponents, bymodeling them as automata.The rest of the paper is organized as follows. Se
tion 13.3 
ontains a des
ription ofthe IOA language. Se
tion 13.4 
ontains an extended example|IOA programs fora toy distributed banking system. Se
tion 13.5 
ontains a dis
ussion of the languagedesign. Se
tion 13.6 
ontains an overview of our work on tools to manipulate IOAprograms. Se
tion 13.7 
ontains some 
on
lusions. An earlier version of this paper(with more details) appeared as a te
hni
al report [GL98℄.13.3 The IOA Language13.3.1 The I/O Automaton ModelAn I/O automaton is a labeled state transition system used to model a rea
tivesystem. It 
onsists of a set of a
tions � (
lassi�ed as input, output , or internal), aset of states s (in
luding a nonempty subset of start states), a set of transitions ofthe form (s; �; s0) that spe
ify the e�e
ts of the automaton's a
tions, and a set oftasks, whi
h are sets of lo
ally 
ontrolled (that is, non-input) a
tions.y Input a
tionsare enabled in all states. The operation of an I/O automaton is des
ribed by itsexe
utions s0; �1; s1; : : : , whi
h are alternating sequen
es of states and a
tions, andits tra
es, whi
h are the externally visible behavior (sequen
es of input and outputa
tions) o

urring in exe
utions. One automaton is said to implement another if allits tra
es are also tra
es of the other. I/O automata admit a parallel 
ompositionoperator, whi
h allows an output a
tion of one automaton to be identi�ed withinput a
tions in other automata; this operator respe
ts the tra
e semanti
s.Proof methods supported by the model in
lude invariant assertion te
hniques forproving that a parti
ular property is true in all rea
hable states, forward and ba
k-ward simulation methods for proving that one automaton implements another (see,for example, [LV95℄), and 
ompositional methods for reasoning about 
olle
tions ofintera
ting 
omponents. For example, a forward simulation from automaton A toautomaton B is a relation R between states of A and states of B that satis�es two
onditions: (i) ea
h start state of A is R-related to some start state of B, and (ii)for ea
h step (sA; �; s0A) of A and ea
h state sB of B su
h that (sA; sB) 2 R, thereexists an exe
ution fragment (that is, a sequen
e of steps) of B that \
orresponds"to the step in a parti
ular way. Namely, it has the same tra
e and leads to a statey Tasks are used primarily to des
ribe liveness; we will mostly ignore them here.



www.manaraa.com

Using I/O Automata for Developing Distributed Systems 289s0B with (s0A; s0B) 2 R. A summary of the model, its features for expressing systemstru
ture, and its proof methods, appears in Chapter 8 of [Lyn96℄.The I/O automaton model is similar to the labeled transition system modelsused to de�ne semanti
s for pro
ess algebrai
 languages like CSP [Hoa85℄ and CCS[Mil89℄. In parti
ular, those models also de�ne parallel 
omposition in terms ofidentifying external a
tions, and have tra
e-like notions of external behavior. Otherlanguages for des
ribing 
on
urrent systems are based on di�erent types of au-tomata, with di�erent notions of 
omposition and external behavior; for instan
e,TLA [Lam94℄ and Unity [CM88℄ are based on automata that 
ombine via sharedvariables. 13.3.2 Language DesignThe IOA language is designed to allow pre
ise and dire
t des
ription of I/O au-tomata. Sin
e the I/O automaton model is a rea
tive system model rather than asequential program model, the language re
e
ts this fundamental distin
tion. Thatis, it is not a standard sequential programming language with some 
onstru
ts for
on
urren
y and intera
tion added on; rather, 
on
urren
y and intera
tion are atits 
ore.The IOA language is designed to support both proving 
orre
tness and gener-ating 
ode. This leads to a tension in the design, be
ause the features that makelanguages suitable for proofs (for example, de
larative style, simpli
ity, and supportfor nondeterminism) di�er from those that make them suitable for 
ode generation(for example, imperative style, expressive power, determinism). Nondeterminismhelps veri�
ation by allowing designers to validate designs in a general form. Asimple language with a de
larative style is easiest to translate into the input lan-guages of standard theorem provers and easiest to manipulate in intera
tive proofs.On the other hand, programmers generally prefer a language with high expressivepower. Moreover, a deterministi
 language with an imperative style is easiest totranslate into runnable 
ode.The starting point for IOA was the pseudo
ode used in earlier work on I/Oautomata. This pseudo
ode 
ontains expli
it representations of the parts of anautomaton de�nition (a
tions, states, transitions, and so on). Transitions are de-s
ribed using transition de�nitions (TDs) 
ontaining pre
onditions and e�e
ts. Thispseudo
ode has evolved in two di�erent forms: a de
larative style (see, for example,[LMWF94℄), in whi
h e�e
ts are des
ribed by predi
ates relating pre- and post-states, and an imperative style (for example, [Lyn96℄), in whi
h e�e
ts are des
ribedby simple imperative programs.In moving from pseudo
ode to a formally de�ned programming language, wemade the following design de
isions:� Data types are de�ned axiomati
ally, in the style used by Isabelle [Pau93℄, the



www.manaraa.com

290 Garland and Lyn
hLar
h Prover (LP) [GG91, Gar94℄, PVS [ORR+96℄ and other theorem provers.This fa
ilitates translation into theorem prover input languages. We providede�nitions for built-in data types and allow the programmer to de�ne new types,using the Lar
h Shared Language (LSL) [GH93℄.� TDs 
an be parameterized and the values of the parameters 
onstrained by pred-i
ates that we 
all \where predi
ates." A TD 
an have additional 
hoose param-eters, whi
h are not formally part of the a
tion name, but whi
h allow values tobe 
hosen to satisfy the pre
ondition and then used in des
ribing the e�e
t.� Sin
e neither the de
larative style nor the imperative style for des
ribing TDe�e
ts is adequate for all purposes, we allow both, either separately or in 
ombi-nation. Thus, a TD e�e
t may be des
ribed entirely by a program, entirely by apredi
ate, or by a 
ombination: a program that in
ludes expli
it nondeterministi

hoi
es, followed by a predi
ate that 
onstrains these 
hoi
es.� Imperative des
riptions of e�e
ts are kept simple, 
onsisting of (possibly nonde-terministi
) assignments, 
onditionals, and simple bounded loops. This simpli
itymakes sense, be
ause transitions are supposed to be exe
uted atomi
ally.� Variables 
an be initialized using ordinary assignments and nondeterministi

hoi
e statements. The entire initial state may be 
onstrained by a predi
ate.� Automaton de�nitions 
an be parameterized.� There is an expli
it notation for parallel 
omposition. In order to des
ribe valuesof variables in the state of a 
omposed automaton, we use a naming 
onventionthat pre�xes the name of ea
h su
h state variable with a sequen
e of namesdesignating the automata of whi
h it is a part. Users 
an abbreviate some ofthese names by shorter or more mnemoni
 \handles." When there is no ambiguity,some of the automaton names or handles in the sequen
e may be suppressed.� There are expli
it notations for hiding output a
tions and asserting that a pred-i
ate is an invariant of an automaton or that a binary relation is a forward orba
kward simulation from one automaton to another.Other languages, su
h as TLA, Unity, and Spe
trum, are similar to IOA inthat their basi
 program units are transition de�nitions with pre
onditions ande�e
ts. However, e�e
ts in TLA are des
ribed de
laratively, e�e
ts in Unity andSpe
trum are des
ribed imperatively, and we allow both. Spe
trum also hasother features in 
ommon with IOA; for example, it uses parameters similar to our
hoose parameters.The IOA referen
e manual [GLV97℄ 
ontains 
omplete de�nitions of the syntaxand semanti
s of IOA, as well as some sample programs.13.3.3 A Simple Example: a Communi
ation ChannelThe following IOA program presents an abstra
t view of a reliable FIFO send-re
eive 
ommuni
ation 
hannel. A 
lient 
an pla
e a message in the 
hannel via a



www.manaraa.com

Using I/O Automata for Developing Distributed Systems 291send a
tion, after whi
h the 
hannel 
an deliver the message via a re
eive a
tion.The spe
i�
ation says nothing about how the 
hannel is implemented to ensurereliable delivery. It simply requires that messages are re
eived in the order they aresent, with no dupli
ates or omissions.automaton 
hannel(i, j: Node, Node, Msg: type)signatureinput send(m: Msg, 
onst i, 
onst j)output re
eive(m: Msg, 
onst i, 
onst j)states queue: Seq[M℄ := { }transitionsinput send(m, i, j)e� queue := queue ` moutput re
eive(m, i, j)pre queue 6= { } ^ m = head(queue)e� queue := tail(queue)The automaton is parameterized by two data types, Node and Msg, whi
h 
anbe instantiated to des
ribe a set of indi
es for 
ommuni
ating nodes and a set ofmessages that 
an be sent; it is also parameterized by the indi
es i and j of thesending and re
eiving nodes. Its signature 
ontains a single send and re
eivea
tion for ea
h m in M; the keyword 
onst indi
ates that the values of i and j inthese a
tions are �xed by the values of the automaton's parameters. Ea
h 
hannelautomaton has a state 
onsisting of a single variable, whi
h holds an initially emptysequen
e of messages. Its a
tions are des
ribed in terms of their pre
onditions ande�e
ts, using the keywords pre and eff. An axiomati
 de�nition of the sequen
edata type provides pre
ise meanings for all other types and operations ({} denotesthe empty sequen
e, and ` appends an element to a sequen
e).IOA 
an also be used to des
ribe spe
i�
 implementations for abstra
t 
hannels,in whi
h lower-level proto
ols ensure reliable message delivery. Furthermore, itallows a designer to assert that these proto
ols in fa
t implement the abstra
t
hannel, by de�ning a relation between the states of the high-level and lower-levelautomata.13.4 Extended Example: a Distributed Banking SystemIn this se
tion, we use IOA to des
ribe a toy banking system in whi
h a single banka

ount is a

essed from several lo
ations, using deposit and withdrawal operationsand balan
e queries. We spe
ify the system and its environment using two I/Oautomata, A and Env. Env des
ribes what operations 
an be invoked, where, andwhen; it represents, for example, a 
olle
tion of ATMs and 
ustomers intera
tingwith those ATMs. Automaton A des
ribes what the bank is allowed to do, withoutany details of the distributed implementation. We also give a formal des
riptionC of a distributed algorithm that implements A, in the 
ontext of Env. We givea spe
i�
ation B for an intermediate servi
e des
ribing stronger guarantees aboutwhat the bank does, and we use it to help prove that C implements A (in the 
ontextof Env). We also give IOA statements expressing some simple invariants and some



www.manaraa.com

292 Garland and Lyn
hforward simulation relations between the levels. These programs illustrate most ofthe language 
onstru
ts.The 
ode in this se
tion has been 
he
ked for validity using our front-end tools,and its 
orre
tness has been proved using the Lar
h Prover.13.4.1 Banking EnvironmentThe automaton Env des
ribes the environment for the banking system. It de-s
ribes the interfa
e by whi
h the environment intera
ts with the bank (requestsand responses at lo
ations indexed by elements of type I), and it expresses \well-formedness 
onditions" saying that an operation at any lo
ation i must 
ompletebefore another operation 
an be submitted at i. Env simply keeps tra
k, for ea
hi, of whether or not there is an outstanding operation at i, and allows submissionof a new operation if not.The de�nition of Env is parameterized by the lo
ation type I. The output a
-tions of Env are requests to perform deposit and withdrawal operations and balan
equeries. Ea
h request indi
ates a lo
ation i. Ea
h deposit or withdrawal requestalso indi
ates a (positive) amount n being deposited or withdrawn. The where pred-i
ates are 
onstraints on the a
tion parameters. The input a
tions of Env, whi
hwill be syn
hronized with outputs a
tions of the bank, are responses OK(i) (to de-posit and withdrawal requests at lo
ation i), and reportBalan
e(n,i) (to balan
equeries).The only state information is a 
ag a
tive[i℄ for ea
h lo
ation i, indi
atingwhether or not there is an a
tive request at lo
ation i. The rest of the automatondes
ription 
onsists of a 
olle
tion of TDs that 
onstrain when new requests 
anbe issued. An input at lo
ation i sets a
tive[i℄ to false. An output is allowedto o

ur at lo
ation i provided that a
tive[i℄ is false, and its e�e
t is to seta
tive[i℄ to true. In this des
ription, Int and Bool are built-in types of IOA,Array is a built-in type 
onstru
tor, and the operator 
onstant appearing in theinitialization is a built-in operator asso
iated with the Array 
onstru
tor.automaton Env(I: type)signatureinput OK(i: I),reportBalan
e(n: Int, i: I)output requestDeposit(n: Int, i: I) where n > 0,requestWithdrawal(n: Int, i: I) where n > 0,requestBalan
e(i: I)states a
tive: Array[I, Bool℄ := 
onstant(false)transitionsinput OK(i)e� a
tive[i℄ := falseinput reportBalan
e(n, i)e� a
tive[i℄ := falseoutput requestDeposit(n, i)pre : a
tive[i℄e� a
tive[i℄ := trueoutput requestWithdrawal(n, i)pre : a
tive[i℄



www.manaraa.com

Using I/O Automata for Developing Distributed Systems 293e� a
tive[i℄ := trueoutput requestBalan
e(i)pre : a
tive[i℄e� a
tive[i℄ := true13.4.2 Weak Requirements Spe
i�
ationAutomaton A is an abstra
t, global des
ription of the basi
 requirements on thebehavior of the banking system. It simply re
ords all deposits and withdrawalsin a set of elements of data type OpRe
. It allows a balan
e query to return theresult of any set of prior deposits and withdrawals that in
ludes all the operationssubmitted at the same lo
ation as the query. The response need not re
e
t depositand withdrawal operations submitted at other lo
ations.A is parameterized by the lo
ation type I. The de�nition of A introdu
es sev-eral data types: Ea
h OpRe
 is an \operation re
ord" indi
ating the amount ofa deposit or withdrawal|positive numbers for deposits and negative numbers forwithdrawals|plus the lo
ation at whi
h it was submitted, a sequen
e number, anda Boolean value indi
ating whether the system has reported the 
ompletion of theoperation to the environment. Ea
h BalRe
 is a \balan
e re
ord" indi
ating thelo
ation at whi
h a balan
e request was submitted and a value to be reported inresponse. An auxiliary spe
i�
ation Total, written in LSL, de�nes the fun
tiontotalAmount, whi
h sums the amount �elds in a set of operation re
ords. The typeNull[Int℄ 
ontains a spe
ial value null, whi
h indi
ates the absen
e of a numeri
alvalue. It is used here to indi
ate that the return value has not yet been determined.The external signature of A is the \mirror image" of that of Env|its inputs
ompose with Env's outputs and vi
e versa. A also has an internal a
tion doBalan
e,whi
h 
al
ulates the balan
e for a balan
e query. The state of A 
onsists of fourvariables: ops holds re
ords of all submitted deposit and withdrawal operations(as OpRe
s); bals keeps tra
k of 
urrent balan
e requests (as BalRe
s); lastSeqno
ontains an array of the last sequen
e numbers assigned to deposits or withdrawalsat all lo
ations; and 
hosenOps is a temporary variable used in one of the TDs.The fun
tions insert and delete are de�ned by the built-in data type Set.The program statements involving these fun
tions look slightly 
ompli
ated be
ausethe fun
tions have no side e�e
ts. The fun
tion nat2pos (de�ned in the auxiliaryspe
i�
ation Numeri
Conversions) 
onverts natural numbers (elements of built-intype Nat) to positive natural numbers (elements of built-in type Pos). The fun
tiondefine 
onverts an element of any type T to an element of type Null[T℄.The a
tion requestDeposit 
auses a new sequen
e number to be generatedand asso
iated with the newly requested deposit operation. The 
ombination ofthe lo
ation at whi
h the operation is submitted and the sequen
e number servesas an identi�er for the operation. The requested deposit amount, the lo
ationand sequen
e number, and the value false indi
ating that no response for thisoperation has yet been made to the environment, are all re
orded in ops. A



www.manaraa.com

294 Garland and Lyn
hrequestWithdrawal 
auses similar e�e
ts, only this time the amount re
orded isnegative. A requestBalan
e 
auses a re
ord to be made of the balan
e query, inbals.The a
tion OK(i) is allowed to o

ur any time there is an a
tive deposit orwithdrawal operation at lo
ation i; its e�e
t is to set the reported 
ag for theoperation to true. The nondeterministi
 \
hoose parameter" x in its TD pi
ks aparti
ular operation re
ord x from the set ops. The a
tion doBalan
e(i) is allowedto o

ur any time there is an a
tive balan
e query at lo
ation i; its e�e
t is to 
hooseany set of operations that in
ludes all those previously performed at lo
ation i, to
al
ulate the balan
e by summing the amounts in all the 
hosen operations, and tostore the result in the balan
e re
ord in bals. Be
ause we are 
urrently using a�rst-order language, without any spe
ial notations for set 
onstru
tion, the e�e
texpresses a set in
lusion using an expli
it quanti�er. Finally, reportBalan
e reportsany 
al
ulated, unreported balan
e to the environment.automaton A(I: type)type OpRe
 = tuple of amount: Int, lo
: I, seqno: Pos, reported: Booltype BalRe
 = tuple of lo
: I, value: Null[Int℄uses Numeri
Conversions, Total(OpRe
, .amount, totalAmount), Null(Int)signatureinput requestDeposit(n: Int, i: I) where n > 0,requestWithdrawal(n: Int, i: I) where n > 0,requestBalan
e(i: I)output OK(i: I),reportBalan
e(n: Int, i: I)internal doBalan
e(i: I)statesops: Set[OpRe
℄ := { },bals: Set[BalRe
℄ := { },lastSeqno: Array[I, Nat℄ := 
onstant(0),
hosenOps: Set[OpRe
℄transitionsinput requestDeposit(n, i)e� lastSeqno[i℄ := lastSeqno[i℄ + 1;ops := insert([n, i, nat2pos(lastSeqno[i℄), false℄, ops)input requestWithdrawal(n, i)e� lastSeqno[i℄ := lastSeqno[i℄ + 1;ops := insert([-n, i, nat2pos(lastSeqno[i℄), false℄, ops)input requestBalan
e(i)e� bals := insert([i, null℄, bals)output OK(i)
hoose x: OpRe
pre x 2 ops ^ x.lo
 = i ^ : x.reportede� ops := insert(set_reported(x, true), delete(x, ops))output reportBalan
e(n, i)pre [i, define(n)℄ 2 balse� bals := delete([i, define(n)℄, bals)internal doBalan
e(i)pre [i, null℄ 2 balse� 
hosenOps := 
hoose 
where 8 y:OpRe
 (y.lo
 = i ^ y 2 ops ) y 2 
) ^ 
 � ops;bals := insert([i,define(totalAmount(
hosenOps))℄,delete([i, null℄, bals))Automaton AEnv is the parallel 
omposition of automata A and Env, mat
hing ex-ternal a
tions:



www.manaraa.com

Using I/O Automata for Developing Distributed Systems 295automaton AEnv(I: type)
ompose A(I); Env(I)The programmer 
an state invariants of AEnv within IOA. In the following invari-ant, the �rst 
lause implies that the value of the variable lastSeqno[i℄ is greaterthan or equal to all sequen
e numbers that have ever been assigned to operationsoriginating at lo
ation i. The se
ond 
lause implies that the sequen
e numbersassigned to operations submitted at lo
ation i form a pre�x of the positive integers.The third and fourth 
lauses say that the environment's a
tive[i℄ 
ag 
orre
tlyindi
ates when an operation or balan
e query is a
tive, and also say that only oneoperation is a
tive at any lo
ation at any time. The �nal 
lause says that thelo
ation and sequen
e number together identify an operation in ops uniquely.invariant of AEnv:8 x:OpRe
 (x 2 ops ) pos2nat(x.seqno) � lastSeqno[x.lo
℄)^ 8 i:I 8 k:Pos (pos2nat(k) � lastSeqno[i℄) 9 z:OpRe
 (z 2 ops ^ z.lo
 = i ^ z.seqno = k))^ 8 x:OpRe
( x 2 ops ^ : x.reported) a
tive[x.lo
℄^ 8 y:OpRe
 (y 2 ops ^ x.lo
 = y.lo
 ^ : y.reported ) x = y)^ 8 b:BalRe
 (b 2 bals ) x.lo
 6= b.lo
))^ 8 b:BalRe
(b 2 bals ) a
tive[b.lo
℄^ 8 b1:BalRe
 (b1 2 bals ^ b.lo
 = b1.lo
 ) b = b1))^ 8 x:OpRe
 8 y:OpRe
(x 2 ops ^ y 2 ops ^ x.lo
 = y.lo
 ^ x.seqno = y.seqno ) x = y)13.4.3 Strong Requirements Spe
i�
ationAutomaton B is very mu
h like A, but imposes a stronger requirement, namely, thatthe response to a balan
e query in
lude the results of all deposits and withdrawalsanywhere in the system that 
omplete before the query is issued. It does this byadding a state variable mustIn
lude[i℄ of type Array[I, Set[OpRe
℄℄ to A, byappending the statementmustIn
lude[i℄ := 
hoose s where 8 x:OpRe
 (x 2 s , x 2 ops ^ x.reported)to the e�e
t of the requestBalan
e(i) TD, and by modifying the 
hoose state-ment in the doBalan
e(i) TD to require the 
hosen set 
 of operations to in
ludemustIn
lude[i℄. The 
hanged parts appear below.automaton B(I: type)...states...mustIn
lude: Array[I, Set[OpRe
℄℄ := 
onstant({ })transitionsinput requestBalan
e(i)e� bals := insert([i, null℄, bals);mustIn
lude[i℄ := 
hoose s where8 x:OpRe
 (x 2 s , x 2 ops ^ x.reported)internal doBalan
e(i)pre [i, null℄ 2 balse� 
hosenOps := 
hoose 
 where



www.manaraa.com

296 Garland and Lyn
h8 y:OpRe
 (y.lo
 = i ^ y 2 ops ) y 2 
)^ mustIn
lude[i℄ � 
 ^ 
 � ops;bals := insert([i, define(totalAmount(
hosenOps))℄,delete([i,null℄, bals))automaton BEnv(I: type)
ompose B(I); Env(I)Informally, it is easy to see that BEnv implements AEnv in the sense that everytra
e of BEnv is also a tra
e of AEnv. Formally, this 
an be shown using a trivialforward simulation relation from BEnv to AEnv, namely, the identity relation for thestate variables of AEnv. This relation 
an be expressed in IOA as follows, usingour pre�x naming 
onvention for variables in a 
omposition. Sin
e there is noambiguity, we 
an write, for example, AEnv.a
tive and A.ops as abbreviations forthe 
omplete names AEnv.A.a
tive and AEnv.A.ops, respe
tively.forward simulation from BEnv to AEnv:AEnv.a
tive = BEnv.a
tive ^ A.ops = B.ops ^ A.bals = B.bals^ A.lastSeqno = B.lastSeqno ^ A.
hosenOps = B.
hosenOps13.4.4 Distributed ImplementationNow we des
ribe a distributed implementation as an automaton C that is the 
om-position of a node automaton C0(i) for ea
h i in I, plus reliable FIFO send/re
eive
ommuni
ation 
hannels 
hannel(i,j) for ea
h pair of distin
t i and j in I, asdes
ribed in Se
tion 13.3.3. Ea
h node automaton C0(i) keeps tra
k of the set of de-posit and withdrawal operations that it \knows about," in
luding all the lo
al ones.It works lo
ally to pro
ess deposits and withdrawals, but a balan
e query 
auses itto send expli
it messages to all other nodes. It 
olle
ts responses to these messagesand 
ombines them with its own known operations to 
al
ulate the response to thebalan
e query.Sin
e the automaton C0(i) 
orresponds to a lo
ation i, its a
tion names areparameterized by i. Its send and re
eive a
tions are intended to mat
h the same-named 
hannel a
tions. In the state of C0(i), ops is maintained as a set of re
ordswith no reported �eld; ea
h re
ord is an element of a new type OpRe
1. The in-formation about whi
h operations have been 
ompleted is kept lo
ally in a separatevariable reports, and is not sent in messages. Balan
e information is also re
ordedlo
ally, as elements of a new type BalRe
1, and never sent. Additional state vari-ables keep tra
k of request messages that have been sent, response messages thathave been re
eived, and response messages that must be sent. Spe
i�
ally, theBoolean 
ag reqSent[j℄ is used to keep tra
k of whether a req message has beensent to j, and the Boolean 
ag respR
vd[j℄ is used to keep tra
k of whether aresponse has been re
eived from j. The 
ag reqR
vd[j℄ is used to re
ord that arequest has just been re
eived from j and is waiting to be answered. (Althoughthese 
ag arrays are indexed by all of I, the 
ags for i itself are not really needed.)Sin
e two kinds of messages are sent in this algorithm, we de�ne a new messagetype Msg as the union of the two individual types.



www.manaraa.com

Using I/O Automata for Developing Distributed Systems 297automaton C0(i: I, I: type)type OpRe
1 = tuple of amount: Int, lo
: I, seqno: Postype BalRe
1 = tuple of value: Null[Int℄type Msg = union of set: Set[OpRe
1℄, req: Stringuses Numeri
Conversions, Total(OpRe
1, .amount, totalAmount), Null(Int)signatureinput requestDeposit(n: Int, 
onst i) where n > 0,requestWithdrawal(n: Int, 
onst i) where n > 0,requestBalan
e(
onst i),re
eive(m: Msg, j: I, 
onst i) where j 6= ioutput OK(
onst i),reportBalan
e(n: Int, 
onst i),send(m: Msg, 
onst i, j: I) where j 6= iinternal doBalan
e(
onst i)statesops: Set[OpRe
1℄ := { },reports: Set[Pos℄ := { },bals: Set[BalRe
1℄ := { },lastSeqno: Nat := 0,reqSent: Array[I, Bool℄ := 
onstant(false),respR
vd: Array[I, Bool℄ := 
onstant(false),reqR
vd: Array[I, Bool℄ := 
onstant(false)transitionsinput requestDeposit(n, i)e� lastSeqno := lastSeqno + 1;ops := insert([n, i, nat2pos(lastSeqno)℄, ops)input requestWithdrawal(n, i)e� lastSeqno := lastSeqno + 1;ops := insert([-n, i, nat2pos(lastSeqno)℄, ops)input requestBalan
e(i)e� bals := insert([null℄, bals);reqSent := 
onstant(false);respR
vd := 
onstant(false)output OK(i)
hoose x: OpRe
1pre x 2 ops ^ x.lo
 = i ^ : ((x.seqno) 2 reports)e� reports := insert(x.seqno, reports)output reportBalan
e(n, i)pre [define(n)℄ 2 balse� bals := delete([define(n)℄, bals)internal doBalan
e(i)pre [null℄ 2 bals ^ 8 j:I (j 6= i ) respR
vd[j℄)e� bals := insert([define(totalAmount(ops))℄, delete([null℄, bals))output send(req(x), i, j)pre : reqSent[j℄ ^ [null℄ 2 balse� reqSent[j℄ := trueoutput send(set(m), i, j)pre m = ops ^ reqR
vd[j℄e� reqR
vd[j℄ := falseinput re
eive(set(m), j, i)e� ops := ops [ m;respR
vd[j℄ := trueinput re
eive(req(x), j, i)e� reqR
vd[j℄ := trueWe de�ne C to be the 
omposition of all the C0(i) and all the 
hannels, with the
ommuni
ation a
tions hidden (to mat
h the external signature of B), and CEnv tobe the 
omposition of C with the environment.automaton C(I: type)
ompose C0(i) for i: I; 
hannel(i, j, I, Msg) for i: I, j: I where i 6= jhide send(m, i, j), re
eive(m, i, j) for m: Msg, i: I, j: I



www.manaraa.com

298 Garland and Lyn
hautomaton CEnv(I: type)
ompose C(I); Env(I)CEnv has invariants analogous to those of AEnv, as well as trivial invariants sayingthat 
hannels from nodes to themselves are never used. A new invariant says thatany (deposit or withdrawal) operation that appears anywhere in the state (at a nodeor in a message) also appears in ops at its originating lo
ation. Other invariantsexpress 
onsisten
y 
onditions su
h as the following. (a) If there is a request in a
hannel, then there is an a
tive query, the 
ags for sending and re
eiving are set
orre
tly, there is only one request in that 
hannel, and there is no response in thereturn 
hannel. (These last two 
on
lusions rule out messages left over from earlierbalan
e queries.) (b) If there is a response in a 
hannel, then there is an a
tive query,the 
ags are set 
orre
tly, there is only one response in the 
hannel, and there is norequest in the 
orresponding 
hannel. (
) The sending and re
eiving 
ags are set
onsistently. (d) If a response has been re
eived, then a 
orresponding request wassent. We omit the IOA formulations of these invariants here; the te
hni
al report[GL98℄ 
ontains them all.To show that CEnv implements BEnv, we de�ne a forward simulation relationfrom CEnv to BEnv. This uses a proje
tion fun
tion proj from OpRe
s to OpRe
1s,de�ned in an auxiliary spe
i�
ation Proje
tions, that just eliminates the reported
omponent.uses Proje
tionforward simulation from CEnv to BEnv:BEnv.a
tive = CEnv.a
tive^ 8 x:OpRe
(x 2 B.ops , proj(x) 2 C0(x.lo
).ops^ (x.reported , x.seqno 2 C0(x.lo
).reports))^ 8 x:BalRe
 (x 2 B.bals , [x.value℄ 2 C0(x.lo
).bals)^ 8 i:I (B.lastSeqno[i℄ = C0(i).lastSeqno)^ 8 i:I 8 j:I 8 x:OpRe
( [i,null℄ 2 B.bals ^ x 2 B.mustIn
lude[i℄ ^ x.lo
 = j ^ j 6= i) proj(x) 2 C0(j).ops^ 8 m:Set[OpRe
1℄(set(m) 2 
hannel(j,i).queue ) proj(x) 2 m)^ (C0(i).respR
vd[j℄ ) proj(x) 2 C0(i).ops))The �rst four 
onjun
ts de�ne simple 
orresponden
es between the ops, bals,lastSeqno, and a
tive 
omponents in BEnv and CEnv. The last 
onjun
t saysthat, if there is an a
tive balan
e query at lo
ation i, and if operation x, originatingat another lo
ation j, is one of those that must be in
luded in the query, then xmust appear in 
ertain pla
es in the global state of CEnv. In parti
ular, x must bein ops at lo
ation j, must be in any response message in transit from j to i, and,in 
ase i has re
eived a message from j, must be at lo
ation i. The existen
e ofthis forward simulation implies that CEnv implements BEnv, whi
h in turn impliesthat CEnv implements AEnv.



www.manaraa.com

Using I/O Automata for Developing Distributed Systems 29913.5 Dis
ussion of Language DesignNondeterminism is an important feature of IOA, be
ause it allows programmers toavoid restri
ting their designs unne
essarily. Reasoning about a design in a generalform is desirable be
ause it produ
es insights (and theorems) that may apply tomany di�erent implementations. Removing the \
lutter" of unne
essary restri
tionsmakes it easier to understand why designs work, be
ause it is easier to see what
orre
tness properties really depend on.An important aspe
t of nondeterministi
 programming is allowing maximum free-dom in the order of a
tion exe
ution. In spe
i�
ations for intera
tive programs,
onsiderable freedom in a
tion order is often a

eptable. Unlike traditional sequen-tial programming styles, the guarded 
ommand style used in IOA makes it easy forprogrammers to 
onstrain a
tion order only when ne
essary.Of 
ourse, 
ontrol over a
tion order is sometimes needed, parti
ularly at lower lev-els of abstra
tion where performan
e requirements may for
e parti
ular s
hedulingde
isions. The 
urrent version of IOA la
ks expli
it 
ontrol stru
tures for des
ribingsu
h 
onstraints. (In examples, these have generally been expressed using spe
ialp
 or status variables to tra
k progress in the sequential part of a 
omputation.) Itis likely that we will want later to enhan
e IOA with expli
it support for spe
ifyinga
tion order.However, new resear
h is needed to dis
over how best to do this. Standardsequential 
ontrol 
onstru
ts are neither suÆ
ient nor entirely ne
essary. For exam-ple, rea
tive systems may 
ontain threads that are intended to exe
ute sequentially,but 
an be interrupted at any time; des
ribing intera
tions between threads andinterrupt-handling routines may require spe
ial 
ontrol stru
tures. On the otherhand, guarded 
ommands 
an be used to des
ribe iteration, whi
h suggests thatsome standard looping 
onstru
ts 
an be avoided. In any 
ase, to maintain sim-pli
ity and provability and to ensure 
onsisten
y with the mathemati
al model, wethink that new sequen
ing 
onstru
ts should be added as pure synta
ti
 sugar, thatis, that there should be an unambiguous translation of the 
ode with the additionsinto 
ode without them.Another possible improvement to IOA would add further lo
al naming 
onven-tions. For instan
e, 
urrently all of an automaton's state variables are global to allof its TDs; one 
ould add variables whose s
ope is limited to a single TD. Also,
urrently all a
tion names in a 
omposition are global. One 
ould also allow lo
ala
tion names, with a more 
exible method of mat
hing up names in a 
omposition;Spe
trum [Gol90℄ uses su
h a me
hanism. A renaming operator for a
tions wouldalso be useful.It might also be desirable to add other \standard" programming language featuresto IOA. (The addition of some obje
t-oriented features to I/O automata is des
ribedin [BH98℄.) However, we think that su
h features should be added judi
iously,



www.manaraa.com

300 Garland and Lyn
hto avoid 
ompli
ating the semanti
s of IOA. In parti
ular, we think that su
hextensions should be made as synta
ti
 sugar.Similarly, it might be desirable to enri
h the logi
al and mathemati
al featuresof IOA. We have 
hosen to base IOA on LSL, whi
h uses the familiar syntax andsemanti
s of �rst-order logi
, so as to fa
ilitate translation into the input languagesof several di�erent theorem provers. As a result, we must rewrite an informalstatement su
h as s := fn : n < 10 ^ a[n℄ > 0g as an IOA statements := 
hoose x where 8 n: Int (n 2 x , n < 10 ^ a[n℄ > 0)that uses expli
it quanti�ers. Although theorem provers su
h as PVS and Isabelleprovide ri
her notations than LP, we are not attra
ted to gaining expressive power bytying IOA too 
losely to less widely understood notations and type systems, whi
hmight limit the range of tools with whi
h IOA 
ould be employed. Instead, weenvision two ways of gaining expressive power. One is to enri
h IOA with synta
ti
sugar for parti
ularly useful 
onstru
ts. Another is to base IOA on the new CommonAlgebrai
 Spe
i�
ation Language (CASL) [CoF98℄ and leverage the work of othersin translating CASL spe
i�
ations into the input languages of di�erent theoremprovers. CASL is attra
tive be
ause it is an emerging standard, has a ri
her typesystem than LSL, and provides better support for parameterized spe
i�
ations.A di�erent, and more traditional, approa
h to 
onstru
ting veri�ed 
ode has beento begin with a ri
h, expressive programming language, de�ne formal semanti
s andproof rules, and try to use them for veri�
ation. We think that this approa
h hasa serious problem: 
ompli
ated languages have 
ompli
ated semanti
s and 
ompli-
ated proof rules, whi
h are diÆ
ult to think about and diÆ
ult to manipulate inproofs. The logi
al 
omplexity of a design des
ribed in su
h a language be
omesintertwined with the 
omplexity of the language, making it hard to understand andverify the design. We think that a better approa
h is to begin with a very simplelanguage that supports good proofs for high-level designs, and to add 
onstru
ts
arefully to obtain expressiveness. 13.6 ToolsIn this se
tion, we des
ribe a set of tools to support IOA programming, and wedes
ribe our progress in building prototypes. For uniformity of presentation, wedes
ribe all tools in the present tense, although they are a
tually in various stagesof development (as indi
ated at the end of ea
h tool's des
ription).13.6.1 General GuidelinesWe require that all tools be based formally on the mathemati
al model. The toolsshould be a

ompanied by theory to explain their operation, for example, theo-rems about the 
orre
tness of program transformations and theorems about the
orre
tness and performan
e of generated 
ode.



www.manaraa.com

Using I/O Automata for Developing Distributed Systems 301Not all tools need to be 
apable of pro
essing the full IOA language. Some toolsmay only pro
ess restri
ted forms of programs, with the user responsible for trans-forming programs into the restri
ted forms.y This approa
h allows users to expresstheir designs in the general IOA language, yet still utilize tools, like simulators andmodel 
he
kers, that require restri
tions. In parti
ular, we believe that the usershould help resolve s
heduling de
isions and other forms of nondeterministi
 
hoi
ewhen submitting a program to a simulator or 
ode generator.The most important use of the validation tools will be for 
he
king safety proper-ties. In fa
t, we propose de-emphasizing liveness properties in favor of 
onsideringtime bounds, whi
h yield sharper information, 
an be expressed formally as safetyproperties, and 
an be handled using standard assertional methods.yThe entire toolset, ex
ept for the theorem prover, should be usable by skilledprogrammers. Use of the theorem prover will require a fair amount of skill in logi
and formal methods. 13.6.2 Basi
 Support ToolsThe basi
 tools for IOA in
lude a front end , 
onsisting of a parser and stati
 se-manti
 
he
ker, whi
h produ
es an internal representation suitable for use by theother (ba
k-end) tools. Other basi
 tools support stru
tured system des
riptionsusing 
omposition and levels of abstra
tion.To support 
omposition, a 
omposer tool 
onverts the des
ription of a 
ompositeautomaton into primitive form by expli
itly representing its a
tions, states, tran-sitions, and tasks. The input to the 
omposer must be a 
ompatible 
olle
tion ofautomata, whi
h means, for example, that the 
omponent automata must have no
ommon output a
tions. (This 
ompatibility 
an be veri�ed using other tools|insimple 
ases, the stati
 semanti
 
he
ker, and in more 
ompli
ated 
ases, a theoremprover.) In the resulting automaton des
ription, the name of a state variable ispre�xed with the names (or handles) of the 
omponents from whi
h it arises.To support levels of abstra
tion, the tools provide fa
ilities for de�ning and usingsimulation relations. When users argue that one automaton A implements anotherautomaton B, they normally expe
t to supply a predi
ate relating the states of Aand B. We think it is reasonable to expe
t the user to supply more, in parti
ular,information relating steps of the two automata. Su
h information 
an be used by atheorem prover in establishing the 
orre
tness of a simulation relation (see Se
tion13.6.3), or by a simulator in testing its 
orre
tness (see Se
tion 13.6.4).For example, to show that a relation R is a forward simulation from A to B, theuser 
an de�ne, for ea
h step (sA; �; s0A) of A (arising from a given TD), and forea
h state sB of B su
h that (sA; sB) 2 R, a \
orresponding" exe
ution fragmenty We use \user" to denote the user of the toolset, that is, the system designer, programmer, or programvalidator.y In
orporating time bounds formally into IOA requires an extension to timed I/O automata, whi
h isbeyond the s
ope of this paper.



www.manaraa.com

302 Garland and Lyn
hof B. One way he/she 
an spe
ify this fragment is by providing, as a fun
tion ofthe given step and state, (a) a sequen
e of TDs of B, and (b) a way of resolvingthe expli
it nondeterministi
 
hoi
es (those represented by 
hoose statements andparameters) in those TDs. This fun
tion 
an be des
ribed using 
ases, based ona user-de�ned 
lassi�
ation of the steps of A. To resolve nondeterministi
 
hoi
es,the user 
an supply subroutines. The programming environment provides an APIfor use in de�ning su
h step 
orresponden
es.It is not always 
lear how to de�ne the needed exe
ution fragment solely as afun
tion of the given step and state. For example, the de�nition of the fragmentmight depend on expli
it nondeterministi
 
hoi
es or on the out
omes of 
onditionaltests in the step of A. In su
h 
ases, the user 
an add history variables to A to re
ordthe relevant 
hoi
es, and use the values of these variables in state s0A in de�ning thefragment. The tools support the addition of su
h history variables.We have implemented the front end already. Chefter's Master's Thesis [Che98℄des
ribes a design for the 
omposer. Neither the 
omposer nor support for levels ofabstra
tion has been implemented yet.13.6.3 Interfa
es to Proof ToolsThe toolset in
ludes interfa
es to existing theorem provers. The IOA language wasdesigned for easy translation into axioms that 
an be used by intera
tive theoremprovers. In this translation, all imperative statements in the e�e
ts of TDs, in
ludingassignment statements, 
hoose statements, 
onditionals, and loops, are repla
ed bypredi
ates relating poststates to prestates, and similarly for initial state des
riptions.Other axioms are derived from formal de�nitions of the data types used in theautomata.Theorem provers 
an be used to prove validity properties for IOA programs andother user inputs (for example, that the set of 
hoi
es for a nondeterministi
 as-signment is nonempty, that automata being 
omposed do not share output a
tions,or that a
tions spe
i�ed by the user of the simulator are enabled) in 
ases wherethe properties are too hard to establish by stati
 
he
king. Theorem provers 
analso be used to prove properties of data types used in automata, invariants of au-tomata, and simulation relations between automata. Theorem provers must be ableto pro
ess programs written in the full IOA language.For example, showing that a relation R is a forward simulation from A to B in-volves showing a relationship between the start states of A and B and a relationshipbetween the steps of A and B. The latter asserts, for ea
h step of A and ea
h stateof B that is R-related to the pre-state in A, the existen
e of a \
orresponding"fragment of B. Proving su
h an existen
e statement automati
ally is diÆ
ult fortheorem provers, so the interfa
e 
an ask the user to help by supplying expli
it step
orresponden
e information, as des
ribed in Se
tion 13.6.2. The user 
an then usethe theorem prover to verify that the spe
i�ed sequen
e satis�es the requirements



www.manaraa.com

Using I/O Automata for Developing Distributed Systems 303for a forward simulation: that the sequen
e is really an exe
ution fragment, that ithas the same external behavior as the given step, and that the �nal states are relatedby R. Our experien
e with proofs of distributed algorithms indi
ates that su
h step
orresponden
e information greatly redu
es the amount of intera
tion needed forthe theorem prover to 
omplete its work.Initially, we are developing an interfa
e to the Lar
h Prover. We have designed atranslation s
heme from IOA des
riptions into LSL and used it manually to provethe invariants and simulation relations shown in Se
tion 13.4 [GL98℄. We have for-malized the translation s
heme (
f. [GLV97℄) and are in the pro
ess of implementingit. Meanwhile, Devillers, working with Vaandrager, is writing a translation fromIOA des
riptions to the input language of PVS [Dev99℄.The toolset also in
ludes interfa
es to existing model 
he
kers. These interfa
esonly handle a restri
ted 
lass of IOA programs. Although programs 
an be non-deterministi
, they must be written in an imperative style and use only those datatypes provided by the model 
he
ker's input language.So far, Vaziri has written a preliminary translation from a restri
ted 
lass of IOAprograms into Promela, the input language of the Spin model 
he
ker [Hol91℄.13.6.4 SimulatorThe simulator runs sample exe
utions of an IOA program on a single ma
hine,allowing the user to help sele
t the exe
utions. The simulator is used mainly for
he
king proposed invariants and simulation relations.yThe simulator requires that IOA programs be transformed into a restri
ted form.The biggest problem in this transformation is resolving nondeterminism, whi
h ap-pears in IOA in two ways: expli
itly , in the form of 
hoose 
onstru
ts in statevariable initializations and TD e�e
ts, and impli
itly , in the form of a
tion s
hedul-ing un
ertainty. The restri
ted form rules out both types of nondeterminism. Wealso assume that an IOA program submitted to the simulator is 
losed (that is,has no input a
tions) and is written in an imperative style. At most one (lo
ally
ontrolled) a
tion may be enabled in any state; moreover, the user is expe
ted todesignate that a
tion, as a fun
tion of the 
urrent state.The tools provide support for getting programs into the required form. For ex-ample, the 
omposer 
an be used to \
lose" an automaton by 
omposing it with auser-de�ned \environment automaton" (like Env in Se
tion 13.4.1). To resolve ex-pli
it nondeterminism, the system 
an generate probabilisti
 
hoi
es. Alternatively,the system 
an ask the user to provide expli
it 
hoi
es, for example, by adding astate variable 
ontaining a pseudo-random sequen
e and repla
ing nondeterministi

hoi
es by su

essive elements of this sequen
e. The theorem prover 
an be usedto 
he
k that the provided 
hoi
es satisfy any required 
onstraints, expressed bywhere 
lauses, pre
onditions, and other predi
ates.y There is an unfortunate 
lash of terminology here, between \simulator" and \simulation relation."



www.manaraa.com

304 Garland and Lyn
hTo remove impli
it nondeterminism, the system 
an ask the user to 
onstrain theautomaton so only one a
tion is enabled in ea
h state; the user 
an do this, forexample, by adding state variables 
ontaining s
heduling information, adding extrapre
onditions for a
tions that involve the new variables, and adding new statementsto the e�e
ts of a
tions to maintain the s
heduling variables. The user should alsoprovide a fun
tion that expli
itly designates the next a
tion to be simulated, as afun
tion of the 
urrent state, in the form of a TD plus expressions giving values forthe a
tion's parameters. The programming environment provides an API for usein writing these fun
tions, and the theorem prover 
an be used to verify that thedesignated a
tion is enabled.For example, if a set of a
tions is to be exe
uted in round-robin order, then as
heduling variable 
an keep tra
k of the (index of the) next a
tion to be performed,the pre
ondition of ea
h a
tion 
an be augmented with a 
lause saying that theindi
ated a
tion is the one re
orded by this variable, and the e�e
t of ea
h a
tion
an in
rement the index maintained by the variable. This strategy removes thes
heduling nondeterminism, and an expli
it fun
tion of the state des
ribes the nexta
tion to be performed.In order to simulate data type operations, whi
h are de�ned axiomati
ally inIOA, the simulator needs a
tual 
ode. For operations de�ned by IOA's built-in datatypes, the simulator uses 
ode from 
lass libraries written in a standard sequentialprogramming language like C++ or Java. For operations (like totalAmount inSe
tion 13.4) de�ned in auxiliary LSL spe
i�
ations, the user 
an 
hoose either towrite these spe
i�
ations in an exe
utable algebrai
 style or to supply handwritten
ode. Although we do not plan to prove the 
orre
tness of this handwritten 
ode,su
h proofs 
ould be 
arried out using te
hniques of sequential program veri�
ation.With all nondeterminism removed, the simulator's job is easy: starting from theunique initial state, it repeatedly performs the unique enabled a
tion. That is, ituses the user-provided fun
tion to determine the next TD and parameter values,then exe
utes that TD with those parameter values. Sin
e there is no expli
itnondeterminism, this uniquely determines the next state.The simulator 
an be used to 
he
k that proposed invariants are true in all statesthat arise in the simulated exe
utions. It 
an also 
he
k that a 
andidate relation Rappears to be a simulation relation from A to B by performing a paired simulationof A and B, that is, by produ
ing an exe
ution of A as usual and using it togenerate a 
orresponding exe
ution of B. Spe
i�
ally, for ea
h simulated step ofA, the simulator uses a user-spe
i�ed step 
orresponden
e (see Se
tion 13.6.2) toobtain a (proposed) exe
ution fragment of B, then runs the steps of that exe
utionfragment. As it runs those steps, the simulator 
he
ks that a
tion pre
onditionsare satis�ed, that values used to resolve expli
it nondeterministi
 
hoi
es satisfy therequired 
onstraints, that the fragment has the same external behavior as the givenstep, and that the relation R holds between the states of the two automata afterthe step and fragment.



www.manaraa.com

Using I/O Automata for Developing Distributed Systems 305Chefter's Master's Thesis [Che98℄ 
ontains a detailed design for the basi
 simu-lator; she has also written a preliminary implementation in Java and produ
ed asmall library of hand-
oded data type implementations. More re
ently, Ramirez hasimproved the simulator, this time starting from the intermediate language des
ribedin Se
tion 13.6.2. It remains to enhan
e this newer version with more advan
ed 
a-pabilities, in
luding the resolution of expli
it and impli
it nondeterministi
 
hoi
esand support for paired simulations.13.6.5 Code GeneratorNearly all of the issues that arise in the simulator arise also for the 
ode generator.New issues also arise be
ause of distribution, the need to intera
t with externallyprovided 
ommuni
ation servi
es, and the need for good runtime performan
e.The 
ode generator generates real 
ode for a target distributed system, whi
h maybe an arbitrary 
on�guration of 
omputing nodes and 
ommuni
ation 
hannels. The
ode generation s
heme works dire
tly from a low-level IOA language des
riptionof the system design, whi
h 
an arise from a series of re�nements starting witha high-level spe
i�
ation. This strategy allows the formal modeling and analysisfa
ilities to be used to reason about the design until the last possible moment, whenit is transformed automati
ally into a working implementation. The veri�
ationfa
ilities 
an be used to ensure that the �nal implementation provably implementshigher-level IOA des
riptions, subje
t to assumed properties of externally providedservi
es, of hand-
oded data type implementations, and of the underlying hardware.The 
ode generation s
heme produ
es runnable versions of node automata that
an 
ommuni
ate via preexisting 
ommuni
ation servi
es su
h as TCP or MPI[MPI95℄, whi
h are modeled by 
hannel automata. Node automata typi
ally modela 
ombination of appli
ation-spe
i�
 
ode and lo
al pie
es of 
ommuni
ation proto-
ols. A key to making this s
heme work is obtaining 
lear IOA spe
i�
ations of real
ommuni
ation servi
es. Su
h de�nitions may be obtained by formalizing existinginformal interfa
e des
riptions and re
asting them, if ne
essary, in terms of shareda
tions.The 
ode generator, like the simulator, relies on users to transform programs intoa spe
ial form. As just des
ribed, programs provided as input to the 
ode generatormust mat
h the given distributed system ar
hite
ture. Node programs must alsosatisfy restri
tions like those required by the simulator, although they need not be
losed. That is, they should in
lude neither expli
it nor impli
it nondeterminism.As before, users should spe
ify the next enabled a
tion, as a fun
tion of the state.We need another (te
hni
al) restri
tion to get a faithful system implementation.Atomi
ity requires that the e�e
t of ea
h transition o

ur without interruption,even if inputs arrive from 
lients or 
ommuni
ation servi
es during its exe
ution. Inour design, su
h inputs are bu�ered. In between running lo
ally 
ontrolled a
tions,the generated program examines bu�ers for newly arrived inputs, and handles some



www.manaraa.com

306 Garland and Lyn
hor all of them by running 
ode for input a
tions. Sin
e this delays pro
essinginputs (with respe
t to when the 
orresponding outputs o

ur), it may upset pre
iseimplementation 
laims for the node automata. Therefore, we restri
t node programsin order to avoid this risk. Stated in its strongest, simplest form, our restri
tionis that ea
h node automaton A be input-delay-insensitive: its external behaviorshould not 
hange if its input a
tions are delayed and reordered before pro
essing.yIt is possible to weaken this requirement slightly, for example, requiring only thatexternal behavior be preserved in \well-formed" environments, for example, onlyfor blo
king inputs. In this 
ase, the a
tual environments of the node automatamust satisfy these assumptions.As for the simulator, the tools provide help in getting programs into the spe
ialform for the 
ode generator. The general tools that support programming usinglevels of abstra
tion 
an be used to re�ne a design within the IOA frameworkuntil the required node-and-
hannel form is rea
hed. IOA spe
i�
ations for a
tual
ommuni
ation servi
es like TCP and MPI are maintained in a library. Support forremoving expli
it (
hoose) and impli
it (s
heduling) nondeterminism is similar tothat for the simulator. Like the simulator, the 
ode generator uses a library of datatype implementations.For ea
h node automaton, the 
ode generator performs a sour
e-to-sour
e transla-tion, translating the IOA 
ode into a program in a standard programming languagelike C++ or Java. This program performs a simple loop, similar to the one per-formed by the simulator, ex
ept that it polls and handles input a
tions in betweenpro
essing lo
ally 
ontrolled a
tions. The 
ode generator may translate the 
ode atdi�erent nodes into di�erent programming languages.By insisting that IOA programs from whi
h we generate 
ode mat
h the avail-able 
omputing hardware and 
ommuni
ation servi
es, and by requiring the nodeprograms to tolerate input delays, we 
an a
hieve a faithful implementation with-out using any nonlo
al syn
hronization, su
h as that required by earlier designs[Gol91, Che97℄.Abstra
t Channels Before using the 
ode generator, it is often helpful to des
ribea system design as a 
omposition of appli
ation automata Ai and high-level abstra
t
hannel automata Cij . Ea
h Cij is, in turn, implemented by lower-level automataDij and Dji, representing real 
hannels, 
omposed with proto
ol automata Pij andPji. For example, an abstra
t FIFO send/re
eive 
hannel 
an be implemented interms of an MPI servi
e and an IOA proto
ol [Tau℄. At this lower level of design, anode automaton Ni is, formally, the 
omposition of the appli
ation automaton Aiand all the proto
ol automata Pij (for node i) that appear in the 
hannel imple-mentations. It is this 
omposed automaton Ni that the 
ode generator translatesy Formally, tra
es(A0 � Bu�) must be a subset of tra
es(A), where A0 is like A ex
ept that its inputs arerenamed to internal versions, and Bu� is a possibly-reordering delay bu�er that takes the real inputsand delivers them later in their internal versions.



www.manaraa.com

Using I/O Automata for Developing Distributed Systems 307into a standard programming language. Figure 13.1 illustrates this design; in this�gure, the 
omposed automata Ni are en
ir
led by dotted lines.
1

A A

D

D

A

D

2

3

D
31

D
13

12

21

D
32

23

12

C

31C
23C

Fig. 13.1. An Implementation Using Abstra
t Channels Implemented by Real Channels.Abstra
t 
hannels provide 
exibility: di�erent abstra
t 
hannels 
an be used withthe same distributed system ar
hite
ture, and the same abstra
t 
hannels 
an beused with di�erent ar
hite
tures. The tools support programming with abstra
t
hannels by maintaining libraries of IOA des
riptions of abstra
t and real 
hannels,and libraries of IOA implementations of abstra
t 
hannels in terms of real 
hannels.The tools 
an also assist in proving the 
orre
tness of implementations of abstra
t
hannels.Status of Code Generation Tauber has de�ned IOA models for external systemservi
es, in
luding the 
onsole and a subset of MPI fun
tions. In a �rst proje
t onabstra
t 
hannels, he has de�ned a proto
ol that implements reliable FIFO 
hannelson top of MPI and proved the 
orre
tness of this proto
ol [Tau℄. He has hand-translated sample distributed IOA programs using abstra
t 
hannels into Java,and he has built an initial version of the 
ode generator for a restri
ted subsetof IOA, using MPI with a Java wrapper [BCF+99℄. This initial version resolvesa
tion-s
heduling nondeterminism using a simple round-robin s
heduler.Tauber and Tsai, with help from Ramirez and Reimers, are 
urrently working ona reimplementation of the 
ode generator. This version takes the IOA intermediatelanguage as input instead of the sour
e 
ode, uses a 
exible a
tion s
heduler, and



www.manaraa.com

308 Garland and Lyn
hdoes not restri
t the use of a
tion parameters, as does the initial version. The newversion is 
onstru
ted as a series of program transformations that use the 
omposerand remove various kinds of nondeterminism.13.7 Con
lusionsIt must still be shown that distributed 
ode with a

eptable performan
e 
an beobtained using IOA. We have many reasons for believing it 
an. First and foremost,our strategy works lo
ally, without syn
hronizing any a
tivities involving more thanone ma
hine. Also, the 
ode-generation pro
ess in
orporates existing servi
es (forexample, 
ommuni
ation servi
es), whi
h may be highly optimized. Also, we allowhand 
oding of data type implementations in a standard sequential programminglanguage, whi
h provides many opportunities for optimization.We think that giving the user 
exibility in 
ontrolling the order in whi
h a
tionsof a lo
al node program are performed will yield more eÆ
ient s
hedules than wouldarise from having a �xed s
heduling dis
ipline. Allowing the s
heduler to 
all a user-provided fun
tion to determine the next a
tion should de
rease runtime overhead.Proving some properties stati
ally should save the expense of some runtime 
he
ks.Sour
e-to-sour
e translation to C++ or other languages allows the use of opti-mizing 
ompilers for those languages. Also, IOA is suÆ
iently 
exible to be usedat di�erent levels of abstra
tion, in
luding a very low level that 
an permit detailedoptimization within IOA itself.Many resear
h problems remain. For theorem prover support, an interestingproblem is to devise spe
ialized proof strategies for proving invariants, simulationrelations, and IOA program validity properties, in order to redu
e the amount ofintera
tion needed in proofs. For model 
he
ker support, it would be useful toaugment existing model 
he
kers with additional data types so they 
an express alarger 
lass of IOA programs. Also, one 
ould develop support for exploring re-stri
ted subsets of an automaton's exe
ution (for example, based on limiting theamount of asyn
hrony) in situations where the full automaton is too large to model
he
k. Another interesting problem is to develop support for model 
he
king pro-posed simulation relations, based on the notion of paired simulation des
ribed inSe
tion 13.6.4. For the simulator, it would be useful to improve the support for re-solving impli
it nondeterminism by developing a library of built-in s
hedulers, andto develop an API to help users 
onstru
t new s
hedulers.For the 
ode generator, resear
h will be needed on improving performan
e andusability. For example, the target 
ode for node programs 
ould use multithreadingto improve performan
e; however, this would make atomi
ity of a
tions harderto ensure and introdu
e 
on
urren
y 
ontrol issues. Additional support for theuser in resolving impli
it and expli
it nondeterminism 
ould be developed. A moresophisti
ated, easier-to-use s
heduling fa
ility 
ould be developed and integratedinto the toolset.



www.manaraa.com

Using I/O Automata for Developing Distributed Systems 309Users 
an program in IOA at any level of abstra
tion. Low levels in
lude moreaspe
ts of program behavior and so permit �ner-tuned optimization. An interestinggeneral problem is to determine how high a level of abstra
tion programmers 
anuse and still obtain a

eptable implementation performan
e.Finally, resear
h is needed in using these methods to generate prototype appli
a-tion systems, in evaluating these systems, in using the results of these experimentsto improve the 
ode generation methods, and in using the improved methods todevelop useful distributed appli
ations.A
knowledgmentsWe thank Anna Chefter, Antonio Ramirez, Joshua Tauber, and Mandana Vaziri fortheir many 
ontributions to this proje
t, espe
ially Josh for his help with Se
tion13.6.5. We also thank Mi
hael Tsai and Holly Reimers for their programming assis-tan
e, and Jason Hi
key, Martin Rinard, and Frits Vaandrager for their suggestionsand en
ouragement. Garland's work was supported in part by NSF Grant CCR-9504248. Lyn
h's work was supported in part by DARPA 
ontra
t F19628-95-C-0018 (monitored by Hans
om Air For
e Base), AFOSR 
ontra
t F49620-97-1-0337,NSF grants CCR-9225124 and CCR-9804665, and NTT Proposal MIT9904-12.Bibliography[AHS98℄ Ar
her, M. M., Heitmeyer, C. L., and Sims, S. TAME: A PVS interfa
e tosimplify proofs for automata models. In Workshop on User Interfa
es forTheorem Provers, Eindhoven University of Te
hnology, July 1998.[Ar
97℄ Ar
her, M., 1997. Personal 
ommuni
ation.[BCF+99℄ Baker, M., Carpenter, B., Fox, G., Ko, S. H., and Lim, S. mpiJava: Anobje
t-oriented Java interfa
e to MPI. In Int. Workshop on Java forParallel and Distributed Computing, IPPS/SPDP 1999, San Juan, PuertoRi
o, April 1999.[BH98℄ Bi
kford, M. and Hi
key, J. Composition and inheritan
e for I/O automatausing interse
tion types. Dept. of Computer S
ien
e, Cornell University,1998.[BKT92℄ Bal, H. E., Kaashoek, M. F., and Tanenbaum, A. S. Or
a: A language forparallel programming of distributed systems. IEEE Trans. on Soft Eng.,18(3):190{205, Mar
h 1992.[Che97℄ Cheiner, O. Implementation and evaluation of an eventually-serializabledata servi
e. Master's thesis, Department of Ele
tri
al Engineering andComputer S
ien
e, Massa
husetts Institute of Te
hnology, Cambridge, MA,September 1997.[Che98℄ Chefter, A. E. A simulator for the IOA language. Master's thesis,Department of Ele
tri
al Engineering and Computer S
ien
e, Massa
husettsInstitute of Te
hnology, Cambridge, MA, May 1998.[CM88℄ Chandy, K. M. and Misra, J. Parallel Program Design: A Foundation.Addison-Wesley Publishing Co., Reading, MA, 1988.[CoF98℄ The 
ommon algebrai
 spe
i�
ation language, April 1998.http://www.bri
s.dk/Proje
ts/CoFI/Do
uments/CASL/Summary/.



www.manaraa.com

310 Garland and Lyn
h[Dev99℄ Devillers, M. Translating IOA automata to PVS. Preliminary Resear
hReport CSI-R9903, Computing S
ien
e Institute, University of Nijmegen,the Netherlands, feb 1999.[DFLS98℄ DePris
o, R., Fekete, A., Lyn
h, N., and Shvartsman, A. A dynami
view-oriented group 
ommuni
ation servi
e. In Pro
. 17th Annual ACMSIGACT-SIGOPS Symposium on Prin
iples of Distributed Computing,pages 227{236, Puerto Vallarta, Mexi
o, June{July 1998.[FGL+99℄ Fekete, A., Gupta, D., Lu
hang
o, V., Lyn
h, N., and Shvartsman, A.Eventually-serializable data servi
e. Theoreti
al Computer S
ien
e,220(1):113{156, June 1999.[FKL98℄ Fekete, A., Kaashoek, M. F., and Lyn
h, N. Implementing sequentially
onsistent shared obje
ts using broad
ast and point-to-point
ommuni
ation. Journal of the ACM, 45(1):35{69, January 1998.[FLS97℄ Fekete, A., Lyn
h, N., and Shvartsman, A. Spe
ifying and using apartitionable group 
ommuni
ation servi
e. In Pro
. 16th Annual ACMSymposium on Prin
iples of Distributed Computing, pages 53{62, SantaBarbara, CA, August 1997. Expanded version in Te
hni
al MemoMIT-LCS-TM-570, Laboratory for Computer S
ien
e, Massa
husettsInstitute of Te
hnology, Cambridge, MA, 1997.[Gar94℄ Garland, S. J. LP, the Lar
h Prover, version 3.1, De
ember 1994. MITLaboratory for Computer S
ien
e.http://www.sds.l
s.mit.edu/~garland/LP/overview.html.[GG91℄ Garland, S. J. and Guttag, J. V. A guide to LP, the Lar
h Prover. Resear
hReport 82, Digital Systems Resear
h Center, 130 Lytton Avenue, Palo Alto,CA 94301, De
ember 1991.[GH93℄ Guttag, J. V. and Horning, J. J., editors. Lar
h: Languages and Tools forFormal Spe
i�
ation. Springer-Verlag Texts and Monographs in ComputerS
ien
e, 1993. With S. J. Garland, K. D. Jones, A. Modet, and J. M. Wing.[GL98℄ Garland, S. J. and Lyn
h, N. A. The IOA language and toolset: Support fordesigning, analyzing, and building distributed systems. Te
hni
al ReportMIT/LCS/TR-762, Laboratory for Computer S
ien
e, Massa
husettsInstitute of Te
hnology, Cambridge, MA, August 1998.http://theory.l
s.mit.edu/tds/papers/Lyn
h/IOA-TR-762.ps.[GLV97℄ Garland, S. J., Lyn
h, N. A., and Vaziri, M. IOA: A Language forSpe
ifying, Programming and Validating Distributed Systems. Laboratory forComputer S
ien
e, Massa
husetts Institute of Te
hnology, Cambridge, MA,De
ember 1997. http://sds.l
s.mit.edu/~garland/ioaLanguage.html.[Gol90℄ Goldman, K. J. Distributed Algorithm Simulation using Input/OutputAutomata. PhD thesis, Department of Ele
tri
al Engineering and ComputerS
ien
e, Massa
husetts Institute of Te
hnology, Cambridge, MA, July 1990.[Gol91℄ Goldman, K. J. Highly 
on
urrent logi
ally syn
hronous multi
ast.Distributed Computing, 6(4):189{207, 1991.[HLvR99℄ Hi
key, J., Lyn
h, N., and van Renesse, R. Spe
i�
ations and proofs forENSEMBLE layers. In Cleaveland, R., editor, Tools and Algorithms for theConstru
tion and Analysis of Systems (Fifth International Conferen
e,TACAS'99), volume 1579 of Le
ture Notes in Computer S
ien
e, pages119{133, Amsterdam, the Netherlands, Mar
h 1999. Springer-Verlag.[Hoa85℄ Hoare, C. A. R. Communi
ating Sequential Pro
esses. Prenti
e-HallInternational, United Kingdom, 1985.[Hol91℄ Holzmann, G. J. Design and Validation of Computer Proto
ols. Prenti
eHall Software Series, New Jersey, 1991.[HvR96℄ Hayden, M. and van Renesse, R. Optimizing layered 
ommuni
ationproto
ols. Te
hni
al Report TR96-1613, Dept. of Computer S
ien
e, Cornell



www.manaraa.com

Using I/O Automata for Developing Distributed Systems 311University, Itha
a, NY, November 1996.[Lam94℄ Lamport, L. The temporal logi
 of a
tions. ACM Transa
tions onProgramming Languages and Systems, 16(3):872{923, May 1994.[LMWF94℄ Lyn
h, N., Merritt, M., Weihl, W., and Fekete, A. Atomi
 Transa
tions.Morgan Kaufmann Publishers, San Mateo, CA, 1994.[LT87℄ Lyn
h, N. A. and Tuttle, M. R. Hierar
hi
al 
orre
tness proofs fordistributed algorithms. In Pro
. 6th Annual ACM Symposium on Prin
iplesof Distributed Computing, pages 137{151, Van
ouver, British Columbia,Canada, August 1987.[LV95℄ Lyn
h, N. and Vaandrager, F. Forward and ba
kward simulations|Part I:Untimed systems. Information and Computation, 121(2):214{233,September 1995.[LV96℄ Lyn
h, N. and Vaandrager, F. Forward and ba
kward simulations|Part II:Timing-based systems. Information and Computation, 128(1):1{25, July1996.[Lyn96℄ Lyn
h, N. Distributed Algorithms. Morgan Kaufmann Publishers, In
., SanMateo, CA, Mar
h 1996.[Mil89℄ Milner, R. Communi
ation and Con
urren
y. Prenti
e-Hall International,United Kingdom, 1989.[MPI95℄ MPI: A message-passing interfa
e standard,Version 1.1. Message PassingInterfa
e Forum, University of Tennessee, Knoxville, June 1995.http://www.m
s.anl.gov/Proje
ts/mpi/mpi
h/index.html.[Nip89℄ Nipkow, T. Formal veri�
ation of data type re�nement: Theory andpra
ti
e. In de Bakker, J. W., de Roever, W. P., and Rozenberg, G., editors,Stepwise Re�nement of Distributed Systems: Models, Formalisms,Corre
tness (REX Workshop), volume 430 of Le
ture Notes in ComputerS
ien
e, pages 561{591, Mook, The Netherlands, May{June 1989.Springer-Verlag.[ORR+96℄ Owre, S., Rajan, S., Rushby, J. M., Shankar, N., and Srivas, M. PVS:Combining spe
i�
ation, proof 
he
king, and model 
he
king. In CAV '96,volume 1102 of Le
ture Notes in Computer S
ien
e, pages 411{414. SpringerVerlag, 1996.[Pau93℄ Paulson, L. C. The Isabelle referen
e manual. Te
hni
al Report 283,University of Cambridge, Computer Laboratory, 1993.[PPG+96℄ Petrov, T. P., Pogosyants, A., Garland, S. J., Lu
hang
o, V., and Lyn
h,N. A. Computer-assisted veri�
ation of an algorithm for 
on
urrenttimestamps. In Gotzhein, R. and Bredereke, J., editors, Formal Des
riptionTe
hniques IX: Theory, Appli
ations, and Tools (FORTE/PSTV'96: JointInt. Conferen
e on Formal Des
ription Te
hniques for Distributed Systemsand Communi
ation Proto
ols, and Proto
ol Spe
i�
ation, Testing, andVeri�
ation), pages 29{44, Kaiserslautern, Germany, O
tober 1996.Chapman & Hall.[SAGG+93℄ S�gaard-Andersen, J. F., Garland, S. J., Guttag, J. V., Lyn
h, N. A., andPogosyants, A. Computer-assisted simulation proofs. In Cour
oubetis, C.,editor, Computer-Aided Veri�
ation (5th Int. Conferen
e, CAV'93), volume697 of Le
ture Notes in Computer S
ien
e, pages 305{319, Elounda, Gree
e,June{July 1993. Springer-Verlag.[Smi97℄ Smith, M. Formal Veri�
ation of TCP and T/TCP. PhD thesis,Department of Ele
tri
al Engineering and Computer S
ien
e, Massa
husettsInstitute of Te
hnology, Cambridge, MA, September 1997.[Tau℄ Tauber, J. A. IOA 
ode generation|theory and pra
ti
e. Manus
ript.[vRBM96℄ van Renesse, R., Birman, K. P., and Ma�eis, S. Horus: A 
exible group
ommuni
ation system. Communi
ations of the ACM, 39(4):76{83, 1996.



www.manaraa.com


