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13Using I/O Automata for Developing Distributed SystemsStephen J. GarlandMIT Laboratory for Computer Siene,545 Tehnology Square, Cambridge, MA 02139garland�ls.mit.eduNany LynhMIT Laboratory for Computer Siene,545 Tehnology Square, Cambridge, MA 02139lynh�theory.ls.mit.eduAbstratThis paper desribes a new experimental programming language, IOA, for modelingand implementing distributed systems, plus designs for a set of tools to supportIOA programming. The language and tools are based on the I/O automaton modelfor reative systems, whih has been used extensively for researh on distributedalgorithms. The language supports strutured modeling of distributed systems usingshared-ation omposition and levels of abstration. The tools are intended tosupport system design, several kinds of analysis, and generation of eÆient runnableode. 13.1 IntrodutionDistributed systems are required to provide inreasingly powerful servies, withinreasingly strong guarantees of performane, fault-tolerane, and seurity. Atthe same time, the networks in whih these systems run are growing larger andbeoming less preditable. It is no wonder that distributed systems have beomevery omplex.The best approah to managing the inreased omplexity of systems involves orga-nizing them in strutured ways, viewing them at di�erent levels of abstration, anddesigning them as parallel ompositions of interating omponents. Suh struturemakes systems easier to understand, build, maintain, and extend, and an serve asthe basis for doumentation and analysis. However, in order to be most useful, thisstruture must rest on a solid mathematial foundation. This is obviously neessaryif the struture is to support formal methods of onstruting or analyzing systems;however, even without formal methods, a mathematial basis is essential for preiseunderstanding.One reasonable mathematial basis is the I/O automaton model [LT87℄, whih has285
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286 Garland and Lynhbeen used to desribe and verify distributed algorithms and to express impossibilityresults (see, for example, [Lyn96℄). Several aspets of this model make it good forsuh tasks. It is based on set-theoreti mathematis rather than on a partiularlogi or programming language. I/O automata are nondeterministi, whih allowssystems to be desribed in their most general forms. I/O automata have a simplenotion of external behavior based on sets of traes of external ations. Moreover, I/Oautomata an be omposed by identifying external ations, in a way that respetsexternal behavior, and pairs of automata an be related using various forms ofimplementation relations that preserve external behavior. The model supports arih set of proof methods, inluding invariant assertion tehniques for proving thata property is true in all reahable states, forward and bakward simulation methodsfor proving that one automaton implements another, and ompositional methodsfor reasoning about olletions of interating omponents.Also, the model has been extended to a timed I/O automaton model [LV96℄,whih allows modeling of timing aspets of distributed systems, inluding timingassumptions and performane guarantees. Both I/O automata and timed I/O au-tomata an be desribed using simple guarded-ommand-style pseudoode (see, forexample, [LMWF94, Lyn96℄).Although I/O automata were originally developed for modeling theoretial dis-tributed algorithms, in the past few years they have been used to model prati-al system omponents suh as distributed shared memory servies (for example,[FKL98, FGL+99℄), group ommuniation servies [FLS97, DFLS98, HLvR99℄, andstandard ommuniation protools like TCP [Smi97℄. This work has resolved am-biguities and ontributed proofs that systems meet their spei�ations. It has ledto the disovery of problems, inluding logial errors in key algorithms in the Ora[BKT92℄, Horus [vRBM96℄, and Ensemble [HvR96℄ systems. Moreover, it has pro-dued I/O automaton pseudoode that is lose to atual system ode: for example,some I/O automaton pseudoode for the Ensemble system [HLvR99℄ is similar tothe atual ML ode that appears in the system implementation.Beause the model and pseudoode have worked well in these ase studies, webelieve they an be made to play a signi�ant role in developing real distributedsystems. In this paper, we desribe one way this might work.Most of the work done so far using I/O automata has been arried out by hand.However, for these methods to play a serious role in system development, they willrequire omputer tool support. So far, tool-based work with I/O automata hasonsisted mainly of using interative theorem provers to verify invariant assertionsand simulation relations (for example, [Nip89, SAGG+93, PPG+96, Ar97℄) forI/O-automaton-based designs. The TAME system [AHS98℄ provides a high-levelinterfae to the PVS theorem prover [ORR+96℄ for speifying and proving propertiesof a timed version of I/O automata. Other tool support for I/O automata inludesthe Spetrum programming language and simulator [Gol90℄.
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Using I/O Automata for Developing Distributed Systems 28713.2 General Design GuidelinesThe tool support we are onstruting begins with a simple formal language for mod-eling distributed systems using I/O automata, based on the guarded-ommand-stylepseudoode already in use. Suh a language should support the system designer inexpressing his/her design at di�erent levels of abstration, starting with a high-levelspei�ation of the required global behavior and ending with a low-level version thatan be translated easily into real ode. The language should also allow the designerto deompose designs into separable omponents with learly de�ned external be-havior.This language should be supported by tools providing aess to a full range ofvalidation methods, inluding proof using an interative theorem prover, simulation,and model-heking. These tools should allow designers to reason about propertiesof their designs at all levels of abstration, and about relationships between di�erentlevels.However, we would like more than just validation tools: we would also like toolsfor onneting veri�ed designs to runnable distributed ode. (Our experiene withsystems like Ensemble suggests that suh onnetions are feasible.) Suh toolswould allow laims and proofs about designs to be arried over automatially toreal distributed programs.In partiular, we believe that, with some well-hosen programmer input, real dis-tributed ode in a standard programming language like C++, Java, or ML, an begenerated automatially from low-level I/O-automaton-based designs. The valida-tion tools should be able to ensure that the �nal programs are orret, subjet toassumptions about externally provided system omponents (for example, ommu-niation servies). Runnable distributed ode has already been generated by handtranslation of some spei� I/O-automaton-based distributed algorithm desriptions[Che97, Tau℄.A programming environment based on suh a language and tools ould help math-ematiians write distributed programs, and help programmers who are not mathe-matiians use mathematial methods in their work.In this paper, we outline our design for suh a programming environment anddesribe our progress on building a researh prototype.As a starting point, we have developed a andidate programming language, theIOA language, designed spei�ally to desribe I/O automata and their relation-ships. IOA has evolved from the various forms of pseudoode used in previous work;it also uses ideas from Spetrum [Gol90℄. It allows automata to be desribed usingtransition de�nitions (guarded ommands) onsisting of preonditions and e�ets.It allows expliit desription of nondeterministi hoie, omposition, and levels ofabstration. It permits both delarative and imperative system desriptions. Al-though the IOA language may need to be enhaned later to inrease its expressive
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288 Garland and Lynhpower, we think it is a good starting point for developing a good programmingenvironment.We have also developed designs for a set of tools for validating and transformingIOA desriptions and for generating ode from IOA desriptions. We are urrentlyre�ning the designs and onstruting prototypes. Key ideas of the high-level designsinvolve mehanisms for resolving nondeterminism, support for programming usinglevels of abstration, and integration of externally provided system omponents, bymodeling them as automata.The rest of the paper is organized as follows. Setion 13.3 ontains a desription ofthe IOA language. Setion 13.4 ontains an extended example|IOA programs fora toy distributed banking system. Setion 13.5 ontains a disussion of the languagedesign. Setion 13.6 ontains an overview of our work on tools to manipulate IOAprograms. Setion 13.7 ontains some onlusions. An earlier version of this paper(with more details) appeared as a tehnial report [GL98℄.13.3 The IOA Language13.3.1 The I/O Automaton ModelAn I/O automaton is a labeled state transition system used to model a reativesystem. It onsists of a set of ations � (lassi�ed as input, output , or internal), aset of states s (inluding a nonempty subset of start states), a set of transitions ofthe form (s; �; s0) that speify the e�ets of the automaton's ations, and a set oftasks, whih are sets of loally ontrolled (that is, non-input) ations.y Input ationsare enabled in all states. The operation of an I/O automaton is desribed by itsexeutions s0; �1; s1; : : : , whih are alternating sequenes of states and ations, andits traes, whih are the externally visible behavior (sequenes of input and outputations) ourring in exeutions. One automaton is said to implement another if allits traes are also traes of the other. I/O automata admit a parallel ompositionoperator, whih allows an output ation of one automaton to be identi�ed withinput ations in other automata; this operator respets the trae semantis.Proof methods supported by the model inlude invariant assertion tehniques forproving that a partiular property is true in all reahable states, forward and bak-ward simulation methods for proving that one automaton implements another (see,for example, [LV95℄), and ompositional methods for reasoning about olletions ofinterating omponents. For example, a forward simulation from automaton A toautomaton B is a relation R between states of A and states of B that satis�es twoonditions: (i) eah start state of A is R-related to some start state of B, and (ii)for eah step (sA; �; s0A) of A and eah state sB of B suh that (sA; sB) 2 R, thereexists an exeution fragment (that is, a sequene of steps) of B that \orresponds"to the step in a partiular way. Namely, it has the same trae and leads to a statey Tasks are used primarily to desribe liveness; we will mostly ignore them here.



www.manaraa.com

Using I/O Automata for Developing Distributed Systems 289s0B with (s0A; s0B) 2 R. A summary of the model, its features for expressing systemstruture, and its proof methods, appears in Chapter 8 of [Lyn96℄.The I/O automaton model is similar to the labeled transition system modelsused to de�ne semantis for proess algebrai languages like CSP [Hoa85℄ and CCS[Mil89℄. In partiular, those models also de�ne parallel omposition in terms ofidentifying external ations, and have trae-like notions of external behavior. Otherlanguages for desribing onurrent systems are based on di�erent types of au-tomata, with di�erent notions of omposition and external behavior; for instane,TLA [Lam94℄ and Unity [CM88℄ are based on automata that ombine via sharedvariables. 13.3.2 Language DesignThe IOA language is designed to allow preise and diret desription of I/O au-tomata. Sine the I/O automaton model is a reative system model rather than asequential program model, the language reets this fundamental distintion. Thatis, it is not a standard sequential programming language with some onstruts foronurreny and interation added on; rather, onurreny and interation are atits ore.The IOA language is designed to support both proving orretness and gener-ating ode. This leads to a tension in the design, beause the features that makelanguages suitable for proofs (for example, delarative style, simpliity, and supportfor nondeterminism) di�er from those that make them suitable for ode generation(for example, imperative style, expressive power, determinism). Nondeterminismhelps veri�ation by allowing designers to validate designs in a general form. Asimple language with a delarative style is easiest to translate into the input lan-guages of standard theorem provers and easiest to manipulate in interative proofs.On the other hand, programmers generally prefer a language with high expressivepower. Moreover, a deterministi language with an imperative style is easiest totranslate into runnable ode.The starting point for IOA was the pseudoode used in earlier work on I/Oautomata. This pseudoode ontains expliit representations of the parts of anautomaton de�nition (ations, states, transitions, and so on). Transitions are de-sribed using transition de�nitions (TDs) ontaining preonditions and e�ets. Thispseudoode has evolved in two di�erent forms: a delarative style (see, for example,[LMWF94℄), in whih e�ets are desribed by prediates relating pre- and post-states, and an imperative style (for example, [Lyn96℄), in whih e�ets are desribedby simple imperative programs.In moving from pseudoode to a formally de�ned programming language, wemade the following design deisions:� Data types are de�ned axiomatially, in the style used by Isabelle [Pau93℄, the
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290 Garland and LynhLarh Prover (LP) [GG91, Gar94℄, PVS [ORR+96℄ and other theorem provers.This failitates translation into theorem prover input languages. We providede�nitions for built-in data types and allow the programmer to de�ne new types,using the Larh Shared Language (LSL) [GH93℄.� TDs an be parameterized and the values of the parameters onstrained by pred-iates that we all \where prediates." A TD an have additional hoose param-eters, whih are not formally part of the ation name, but whih allow values tobe hosen to satisfy the preondition and then used in desribing the e�et.� Sine neither the delarative style nor the imperative style for desribing TDe�ets is adequate for all purposes, we allow both, either separately or in ombi-nation. Thus, a TD e�et may be desribed entirely by a program, entirely by aprediate, or by a ombination: a program that inludes expliit nondeterministihoies, followed by a prediate that onstrains these hoies.� Imperative desriptions of e�ets are kept simple, onsisting of (possibly nonde-terministi) assignments, onditionals, and simple bounded loops. This simpliitymakes sense, beause transitions are supposed to be exeuted atomially.� Variables an be initialized using ordinary assignments and nondeterministihoie statements. The entire initial state may be onstrained by a prediate.� Automaton de�nitions an be parameterized.� There is an expliit notation for parallel omposition. In order to desribe valuesof variables in the state of a omposed automaton, we use a naming onventionthat pre�xes the name of eah suh state variable with a sequene of namesdesignating the automata of whih it is a part. Users an abbreviate some ofthese names by shorter or more mnemoni \handles." When there is no ambiguity,some of the automaton names or handles in the sequene may be suppressed.� There are expliit notations for hiding output ations and asserting that a pred-iate is an invariant of an automaton or that a binary relation is a forward orbakward simulation from one automaton to another.Other languages, suh as TLA, Unity, and Spetrum, are similar to IOA inthat their basi program units are transition de�nitions with preonditions ande�ets. However, e�ets in TLA are desribed delaratively, e�ets in Unity andSpetrum are desribed imperatively, and we allow both. Spetrum also hasother features in ommon with IOA; for example, it uses parameters similar to ourhoose parameters.The IOA referene manual [GLV97℄ ontains omplete de�nitions of the syntaxand semantis of IOA, as well as some sample programs.13.3.3 A Simple Example: a Communiation ChannelThe following IOA program presents an abstrat view of a reliable FIFO send-reeive ommuniation hannel. A lient an plae a message in the hannel via a
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Using I/O Automata for Developing Distributed Systems 291send ation, after whih the hannel an deliver the message via a reeive ation.The spei�ation says nothing about how the hannel is implemented to ensurereliable delivery. It simply requires that messages are reeived in the order they aresent, with no dupliates or omissions.automaton hannel(i, j: Node, Node, Msg: type)signatureinput send(m: Msg, onst i, onst j)output reeive(m: Msg, onst i, onst j)states queue: Seq[M℄ := { }transitionsinput send(m, i, j)e� queue := queue ` moutput reeive(m, i, j)pre queue 6= { } ^ m = head(queue)e� queue := tail(queue)The automaton is parameterized by two data types, Node and Msg, whih anbe instantiated to desribe a set of indies for ommuniating nodes and a set ofmessages that an be sent; it is also parameterized by the indies i and j of thesending and reeiving nodes. Its signature ontains a single send and reeiveation for eah m in M; the keyword onst indiates that the values of i and j inthese ations are �xed by the values of the automaton's parameters. Eah hannelautomaton has a state onsisting of a single variable, whih holds an initially emptysequene of messages. Its ations are desribed in terms of their preonditions ande�ets, using the keywords pre and eff. An axiomati de�nition of the sequenedata type provides preise meanings for all other types and operations ({} denotesthe empty sequene, and ` appends an element to a sequene).IOA an also be used to desribe spei� implementations for abstrat hannels,in whih lower-level protools ensure reliable message delivery. Furthermore, itallows a designer to assert that these protools in fat implement the abstrathannel, by de�ning a relation between the states of the high-level and lower-levelautomata.13.4 Extended Example: a Distributed Banking SystemIn this setion, we use IOA to desribe a toy banking system in whih a single bankaount is aessed from several loations, using deposit and withdrawal operationsand balane queries. We speify the system and its environment using two I/Oautomata, A and Env. Env desribes what operations an be invoked, where, andwhen; it represents, for example, a olletion of ATMs and ustomers interatingwith those ATMs. Automaton A desribes what the bank is allowed to do, withoutany details of the distributed implementation. We also give a formal desriptionC of a distributed algorithm that implements A, in the ontext of Env. We givea spei�ation B for an intermediate servie desribing stronger guarantees aboutwhat the bank does, and we use it to help prove that C implements A (in the ontextof Env). We also give IOA statements expressing some simple invariants and some
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292 Garland and Lynhforward simulation relations between the levels. These programs illustrate most ofthe language onstruts.The ode in this setion has been heked for validity using our front-end tools,and its orretness has been proved using the Larh Prover.13.4.1 Banking EnvironmentThe automaton Env desribes the environment for the banking system. It de-sribes the interfae by whih the environment interats with the bank (requestsand responses at loations indexed by elements of type I), and it expresses \well-formedness onditions" saying that an operation at any loation i must ompletebefore another operation an be submitted at i. Env simply keeps trak, for eahi, of whether or not there is an outstanding operation at i, and allows submissionof a new operation if not.The de�nition of Env is parameterized by the loation type I. The output a-tions of Env are requests to perform deposit and withdrawal operations and balanequeries. Eah request indiates a loation i. Eah deposit or withdrawal requestalso indiates a (positive) amount n being deposited or withdrawn. The where pred-iates are onstraints on the ation parameters. The input ations of Env, whihwill be synhronized with outputs ations of the bank, are responses OK(i) (to de-posit and withdrawal requests at loation i), and reportBalane(n,i) (to balanequeries).The only state information is a ag ative[i℄ for eah loation i, indiatingwhether or not there is an ative request at loation i. The rest of the automatondesription onsists of a olletion of TDs that onstrain when new requests anbe issued. An input at loation i sets ative[i℄ to false. An output is allowedto our at loation i provided that ative[i℄ is false, and its e�et is to setative[i℄ to true. In this desription, Int and Bool are built-in types of IOA,Array is a built-in type onstrutor, and the operator onstant appearing in theinitialization is a built-in operator assoiated with the Array onstrutor.automaton Env(I: type)signatureinput OK(i: I),reportBalane(n: Int, i: I)output requestDeposit(n: Int, i: I) where n > 0,requestWithdrawal(n: Int, i: I) where n > 0,requestBalane(i: I)states ative: Array[I, Bool℄ := onstant(false)transitionsinput OK(i)e� ative[i℄ := falseinput reportBalane(n, i)e� ative[i℄ := falseoutput requestDeposit(n, i)pre : ative[i℄e� ative[i℄ := trueoutput requestWithdrawal(n, i)pre : ative[i℄
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Using I/O Automata for Developing Distributed Systems 293e� ative[i℄ := trueoutput requestBalane(i)pre : ative[i℄e� ative[i℄ := true13.4.2 Weak Requirements Spei�ationAutomaton A is an abstrat, global desription of the basi requirements on thebehavior of the banking system. It simply reords all deposits and withdrawalsin a set of elements of data type OpRe. It allows a balane query to return theresult of any set of prior deposits and withdrawals that inludes all the operationssubmitted at the same loation as the query. The response need not reet depositand withdrawal operations submitted at other loations.A is parameterized by the loation type I. The de�nition of A introdues sev-eral data types: Eah OpRe is an \operation reord" indiating the amount ofa deposit or withdrawal|positive numbers for deposits and negative numbers forwithdrawals|plus the loation at whih it was submitted, a sequene number, anda Boolean value indiating whether the system has reported the ompletion of theoperation to the environment. Eah BalRe is a \balane reord" indiating theloation at whih a balane request was submitted and a value to be reported inresponse. An auxiliary spei�ation Total, written in LSL, de�nes the funtiontotalAmount, whih sums the amount �elds in a set of operation reords. The typeNull[Int℄ ontains a speial value null, whih indiates the absene of a numerialvalue. It is used here to indiate that the return value has not yet been determined.The external signature of A is the \mirror image" of that of Env|its inputsompose with Env's outputs and vie versa. A also has an internal ation doBalane,whih alulates the balane for a balane query. The state of A onsists of fourvariables: ops holds reords of all submitted deposit and withdrawal operations(as OpRes); bals keeps trak of urrent balane requests (as BalRes); lastSeqnoontains an array of the last sequene numbers assigned to deposits or withdrawalsat all loations; and hosenOps is a temporary variable used in one of the TDs.The funtions insert and delete are de�ned by the built-in data type Set.The program statements involving these funtions look slightly ompliated beausethe funtions have no side e�ets. The funtion nat2pos (de�ned in the auxiliaryspei�ation NumeriConversions) onverts natural numbers (elements of built-intype Nat) to positive natural numbers (elements of built-in type Pos). The funtiondefine onverts an element of any type T to an element of type Null[T℄.The ation requestDeposit auses a new sequene number to be generatedand assoiated with the newly requested deposit operation. The ombination ofthe loation at whih the operation is submitted and the sequene number servesas an identi�er for the operation. The requested deposit amount, the loationand sequene number, and the value false indiating that no response for thisoperation has yet been made to the environment, are all reorded in ops. A
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294 Garland and LynhrequestWithdrawal auses similar e�ets, only this time the amount reorded isnegative. A requestBalane auses a reord to be made of the balane query, inbals.The ation OK(i) is allowed to our any time there is an ative deposit orwithdrawal operation at loation i; its e�et is to set the reported ag for theoperation to true. The nondeterministi \hoose parameter" x in its TD piks apartiular operation reord x from the set ops. The ation doBalane(i) is allowedto our any time there is an ative balane query at loation i; its e�et is to hooseany set of operations that inludes all those previously performed at loation i, toalulate the balane by summing the amounts in all the hosen operations, and tostore the result in the balane reord in bals. Beause we are urrently using a�rst-order language, without any speial notations for set onstrution, the e�etexpresses a set inlusion using an expliit quanti�er. Finally, reportBalane reportsany alulated, unreported balane to the environment.automaton A(I: type)type OpRe = tuple of amount: Int, lo: I, seqno: Pos, reported: Booltype BalRe = tuple of lo: I, value: Null[Int℄uses NumeriConversions, Total(OpRe, .amount, totalAmount), Null(Int)signatureinput requestDeposit(n: Int, i: I) where n > 0,requestWithdrawal(n: Int, i: I) where n > 0,requestBalane(i: I)output OK(i: I),reportBalane(n: Int, i: I)internal doBalane(i: I)statesops: Set[OpRe℄ := { },bals: Set[BalRe℄ := { },lastSeqno: Array[I, Nat℄ := onstant(0),hosenOps: Set[OpRe℄transitionsinput requestDeposit(n, i)e� lastSeqno[i℄ := lastSeqno[i℄ + 1;ops := insert([n, i, nat2pos(lastSeqno[i℄), false℄, ops)input requestWithdrawal(n, i)e� lastSeqno[i℄ := lastSeqno[i℄ + 1;ops := insert([-n, i, nat2pos(lastSeqno[i℄), false℄, ops)input requestBalane(i)e� bals := insert([i, null℄, bals)output OK(i)hoose x: OpRepre x 2 ops ^ x.lo = i ^ : x.reportede� ops := insert(set_reported(x, true), delete(x, ops))output reportBalane(n, i)pre [i, define(n)℄ 2 balse� bals := delete([i, define(n)℄, bals)internal doBalane(i)pre [i, null℄ 2 balse� hosenOps := hoose where 8 y:OpRe (y.lo = i ^ y 2 ops ) y 2 ) ^  � ops;bals := insert([i,define(totalAmount(hosenOps))℄,delete([i, null℄, bals))Automaton AEnv is the parallel omposition of automata A and Env, mathing ex-ternal ations:
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Using I/O Automata for Developing Distributed Systems 295automaton AEnv(I: type)ompose A(I); Env(I)The programmer an state invariants of AEnv within IOA. In the following invari-ant, the �rst lause implies that the value of the variable lastSeqno[i℄ is greaterthan or equal to all sequene numbers that have ever been assigned to operationsoriginating at loation i. The seond lause implies that the sequene numbersassigned to operations submitted at loation i form a pre�x of the positive integers.The third and fourth lauses say that the environment's ative[i℄ ag orretlyindiates when an operation or balane query is ative, and also say that only oneoperation is ative at any loation at any time. The �nal lause says that theloation and sequene number together identify an operation in ops uniquely.invariant of AEnv:8 x:OpRe (x 2 ops ) pos2nat(x.seqno) � lastSeqno[x.lo℄)^ 8 i:I 8 k:Pos (pos2nat(k) � lastSeqno[i℄) 9 z:OpRe (z 2 ops ^ z.lo = i ^ z.seqno = k))^ 8 x:OpRe( x 2 ops ^ : x.reported) ative[x.lo℄^ 8 y:OpRe (y 2 ops ^ x.lo = y.lo ^ : y.reported ) x = y)^ 8 b:BalRe (b 2 bals ) x.lo 6= b.lo))^ 8 b:BalRe(b 2 bals ) ative[b.lo℄^ 8 b1:BalRe (b1 2 bals ^ b.lo = b1.lo ) b = b1))^ 8 x:OpRe 8 y:OpRe(x 2 ops ^ y 2 ops ^ x.lo = y.lo ^ x.seqno = y.seqno ) x = y)13.4.3 Strong Requirements Spei�ationAutomaton B is very muh like A, but imposes a stronger requirement, namely, thatthe response to a balane query inlude the results of all deposits and withdrawalsanywhere in the system that omplete before the query is issued. It does this byadding a state variable mustInlude[i℄ of type Array[I, Set[OpRe℄℄ to A, byappending the statementmustInlude[i℄ := hoose s where 8 x:OpRe (x 2 s , x 2 ops ^ x.reported)to the e�et of the requestBalane(i) TD, and by modifying the hoose state-ment in the doBalane(i) TD to require the hosen set  of operations to inludemustInlude[i℄. The hanged parts appear below.automaton B(I: type)...states...mustInlude: Array[I, Set[OpRe℄℄ := onstant({ })transitionsinput requestBalane(i)e� bals := insert([i, null℄, bals);mustInlude[i℄ := hoose s where8 x:OpRe (x 2 s , x 2 ops ^ x.reported)internal doBalane(i)pre [i, null℄ 2 balse� hosenOps := hoose  where
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296 Garland and Lynh8 y:OpRe (y.lo = i ^ y 2 ops ) y 2 )^ mustInlude[i℄ �  ^  � ops;bals := insert([i, define(totalAmount(hosenOps))℄,delete([i,null℄, bals))automaton BEnv(I: type)ompose B(I); Env(I)Informally, it is easy to see that BEnv implements AEnv in the sense that everytrae of BEnv is also a trae of AEnv. Formally, this an be shown using a trivialforward simulation relation from BEnv to AEnv, namely, the identity relation for thestate variables of AEnv. This relation an be expressed in IOA as follows, usingour pre�x naming onvention for variables in a omposition. Sine there is noambiguity, we an write, for example, AEnv.ative and A.ops as abbreviations forthe omplete names AEnv.A.ative and AEnv.A.ops, respetively.forward simulation from BEnv to AEnv:AEnv.ative = BEnv.ative ^ A.ops = B.ops ^ A.bals = B.bals^ A.lastSeqno = B.lastSeqno ^ A.hosenOps = B.hosenOps13.4.4 Distributed ImplementationNow we desribe a distributed implementation as an automaton C that is the om-position of a node automaton C0(i) for eah i in I, plus reliable FIFO send/reeiveommuniation hannels hannel(i,j) for eah pair of distint i and j in I, asdesribed in Setion 13.3.3. Eah node automaton C0(i) keeps trak of the set of de-posit and withdrawal operations that it \knows about," inluding all the loal ones.It works loally to proess deposits and withdrawals, but a balane query auses itto send expliit messages to all other nodes. It ollets responses to these messagesand ombines them with its own known operations to alulate the response to thebalane query.Sine the automaton C0(i) orresponds to a loation i, its ation names areparameterized by i. Its send and reeive ations are intended to math the same-named hannel ations. In the state of C0(i), ops is maintained as a set of reordswith no reported �eld; eah reord is an element of a new type OpRe1. The in-formation about whih operations have been ompleted is kept loally in a separatevariable reports, and is not sent in messages. Balane information is also reordedloally, as elements of a new type BalRe1, and never sent. Additional state vari-ables keep trak of request messages that have been sent, response messages thathave been reeived, and response messages that must be sent. Spei�ally, theBoolean ag reqSent[j℄ is used to keep trak of whether a req message has beensent to j, and the Boolean ag respRvd[j℄ is used to keep trak of whether aresponse has been reeived from j. The ag reqRvd[j℄ is used to reord that arequest has just been reeived from j and is waiting to be answered. (Althoughthese ag arrays are indexed by all of I, the ags for i itself are not really needed.)Sine two kinds of messages are sent in this algorithm, we de�ne a new messagetype Msg as the union of the two individual types.
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Using I/O Automata for Developing Distributed Systems 297automaton C0(i: I, I: type)type OpRe1 = tuple of amount: Int, lo: I, seqno: Postype BalRe1 = tuple of value: Null[Int℄type Msg = union of set: Set[OpRe1℄, req: Stringuses NumeriConversions, Total(OpRe1, .amount, totalAmount), Null(Int)signatureinput requestDeposit(n: Int, onst i) where n > 0,requestWithdrawal(n: Int, onst i) where n > 0,requestBalane(onst i),reeive(m: Msg, j: I, onst i) where j 6= ioutput OK(onst i),reportBalane(n: Int, onst i),send(m: Msg, onst i, j: I) where j 6= iinternal doBalane(onst i)statesops: Set[OpRe1℄ := { },reports: Set[Pos℄ := { },bals: Set[BalRe1℄ := { },lastSeqno: Nat := 0,reqSent: Array[I, Bool℄ := onstant(false),respRvd: Array[I, Bool℄ := onstant(false),reqRvd: Array[I, Bool℄ := onstant(false)transitionsinput requestDeposit(n, i)e� lastSeqno := lastSeqno + 1;ops := insert([n, i, nat2pos(lastSeqno)℄, ops)input requestWithdrawal(n, i)e� lastSeqno := lastSeqno + 1;ops := insert([-n, i, nat2pos(lastSeqno)℄, ops)input requestBalane(i)e� bals := insert([null℄, bals);reqSent := onstant(false);respRvd := onstant(false)output OK(i)hoose x: OpRe1pre x 2 ops ^ x.lo = i ^ : ((x.seqno) 2 reports)e� reports := insert(x.seqno, reports)output reportBalane(n, i)pre [define(n)℄ 2 balse� bals := delete([define(n)℄, bals)internal doBalane(i)pre [null℄ 2 bals ^ 8 j:I (j 6= i ) respRvd[j℄)e� bals := insert([define(totalAmount(ops))℄, delete([null℄, bals))output send(req(x), i, j)pre : reqSent[j℄ ^ [null℄ 2 balse� reqSent[j℄ := trueoutput send(set(m), i, j)pre m = ops ^ reqRvd[j℄e� reqRvd[j℄ := falseinput reeive(set(m), j, i)e� ops := ops [ m;respRvd[j℄ := trueinput reeive(req(x), j, i)e� reqRvd[j℄ := trueWe de�ne C to be the omposition of all the C0(i) and all the hannels, with theommuniation ations hidden (to math the external signature of B), and CEnv tobe the omposition of C with the environment.automaton C(I: type)ompose C0(i) for i: I; hannel(i, j, I, Msg) for i: I, j: I where i 6= jhide send(m, i, j), reeive(m, i, j) for m: Msg, i: I, j: I
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298 Garland and Lynhautomaton CEnv(I: type)ompose C(I); Env(I)CEnv has invariants analogous to those of AEnv, as well as trivial invariants sayingthat hannels from nodes to themselves are never used. A new invariant says thatany (deposit or withdrawal) operation that appears anywhere in the state (at a nodeor in a message) also appears in ops at its originating loation. Other invariantsexpress onsisteny onditions suh as the following. (a) If there is a request in ahannel, then there is an ative query, the ags for sending and reeiving are setorretly, there is only one request in that hannel, and there is no response in thereturn hannel. (These last two onlusions rule out messages left over from earlierbalane queries.) (b) If there is a response in a hannel, then there is an ative query,the ags are set orretly, there is only one response in the hannel, and there is norequest in the orresponding hannel. () The sending and reeiving ags are setonsistently. (d) If a response has been reeived, then a orresponding request wassent. We omit the IOA formulations of these invariants here; the tehnial report[GL98℄ ontains them all.To show that CEnv implements BEnv, we de�ne a forward simulation relationfrom CEnv to BEnv. This uses a projetion funtion proj from OpRes to OpRe1s,de�ned in an auxiliary spei�ation Projetions, that just eliminates the reportedomponent.uses Projetionforward simulation from CEnv to BEnv:BEnv.ative = CEnv.ative^ 8 x:OpRe(x 2 B.ops , proj(x) 2 C0(x.lo).ops^ (x.reported , x.seqno 2 C0(x.lo).reports))^ 8 x:BalRe (x 2 B.bals , [x.value℄ 2 C0(x.lo).bals)^ 8 i:I (B.lastSeqno[i℄ = C0(i).lastSeqno)^ 8 i:I 8 j:I 8 x:OpRe( [i,null℄ 2 B.bals ^ x 2 B.mustInlude[i℄ ^ x.lo = j ^ j 6= i) proj(x) 2 C0(j).ops^ 8 m:Set[OpRe1℄(set(m) 2 hannel(j,i).queue ) proj(x) 2 m)^ (C0(i).respRvd[j℄ ) proj(x) 2 C0(i).ops))The �rst four onjunts de�ne simple orrespondenes between the ops, bals,lastSeqno, and ative omponents in BEnv and CEnv. The last onjunt saysthat, if there is an ative balane query at loation i, and if operation x, originatingat another loation j, is one of those that must be inluded in the query, then xmust appear in ertain plaes in the global state of CEnv. In partiular, x must bein ops at loation j, must be in any response message in transit from j to i, and,in ase i has reeived a message from j, must be at loation i. The existene ofthis forward simulation implies that CEnv implements BEnv, whih in turn impliesthat CEnv implements AEnv.
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Using I/O Automata for Developing Distributed Systems 29913.5 Disussion of Language DesignNondeterminism is an important feature of IOA, beause it allows programmers toavoid restriting their designs unneessarily. Reasoning about a design in a generalform is desirable beause it produes insights (and theorems) that may apply tomany di�erent implementations. Removing the \lutter" of unneessary restritionsmakes it easier to understand why designs work, beause it is easier to see whatorretness properties really depend on.An important aspet of nondeterministi programming is allowing maximum free-dom in the order of ation exeution. In spei�ations for interative programs,onsiderable freedom in ation order is often aeptable. Unlike traditional sequen-tial programming styles, the guarded ommand style used in IOA makes it easy forprogrammers to onstrain ation order only when neessary.Of ourse, ontrol over ation order is sometimes needed, partiularly at lower lev-els of abstration where performane requirements may fore partiular shedulingdeisions. The urrent version of IOA laks expliit ontrol strutures for desribingsuh onstraints. (In examples, these have generally been expressed using speialp or status variables to trak progress in the sequential part of a omputation.) Itis likely that we will want later to enhane IOA with expliit support for speifyingation order.However, new researh is needed to disover how best to do this. Standardsequential ontrol onstruts are neither suÆient nor entirely neessary. For exam-ple, reative systems may ontain threads that are intended to exeute sequentially,but an be interrupted at any time; desribing interations between threads andinterrupt-handling routines may require speial ontrol strutures. On the otherhand, guarded ommands an be used to desribe iteration, whih suggests thatsome standard looping onstruts an be avoided. In any ase, to maintain sim-pliity and provability and to ensure onsisteny with the mathematial model, wethink that new sequening onstruts should be added as pure syntati sugar, thatis, that there should be an unambiguous translation of the ode with the additionsinto ode without them.Another possible improvement to IOA would add further loal naming onven-tions. For instane, urrently all of an automaton's state variables are global to allof its TDs; one ould add variables whose sope is limited to a single TD. Also,urrently all ation names in a omposition are global. One ould also allow loalation names, with a more exible method of mathing up names in a omposition;Spetrum [Gol90℄ uses suh a mehanism. A renaming operator for ations wouldalso be useful.It might also be desirable to add other \standard" programming language featuresto IOA. (The addition of some objet-oriented features to I/O automata is desribedin [BH98℄.) However, we think that suh features should be added judiiously,
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300 Garland and Lynhto avoid ompliating the semantis of IOA. In partiular, we think that suhextensions should be made as syntati sugar.Similarly, it might be desirable to enrih the logial and mathematial featuresof IOA. We have hosen to base IOA on LSL, whih uses the familiar syntax andsemantis of �rst-order logi, so as to failitate translation into the input languagesof several di�erent theorem provers. As a result, we must rewrite an informalstatement suh as s := fn : n < 10 ^ a[n℄ > 0g as an IOA statements := hoose x where 8 n: Int (n 2 x , n < 10 ^ a[n℄ > 0)that uses expliit quanti�ers. Although theorem provers suh as PVS and Isabelleprovide riher notations than LP, we are not attrated to gaining expressive power bytying IOA too losely to less widely understood notations and type systems, whihmight limit the range of tools with whih IOA ould be employed. Instead, weenvision two ways of gaining expressive power. One is to enrih IOA with syntatisugar for partiularly useful onstruts. Another is to base IOA on the new CommonAlgebrai Spei�ation Language (CASL) [CoF98℄ and leverage the work of othersin translating CASL spei�ations into the input languages of di�erent theoremprovers. CASL is attrative beause it is an emerging standard, has a riher typesystem than LSL, and provides better support for parameterized spei�ations.A di�erent, and more traditional, approah to onstruting veri�ed ode has beento begin with a rih, expressive programming language, de�ne formal semantis andproof rules, and try to use them for veri�ation. We think that this approah hasa serious problem: ompliated languages have ompliated semantis and ompli-ated proof rules, whih are diÆult to think about and diÆult to manipulate inproofs. The logial omplexity of a design desribed in suh a language beomesintertwined with the omplexity of the language, making it hard to understand andverify the design. We think that a better approah is to begin with a very simplelanguage that supports good proofs for high-level designs, and to add onstrutsarefully to obtain expressiveness. 13.6 ToolsIn this setion, we desribe a set of tools to support IOA programming, and wedesribe our progress in building prototypes. For uniformity of presentation, wedesribe all tools in the present tense, although they are atually in various stagesof development (as indiated at the end of eah tool's desription).13.6.1 General GuidelinesWe require that all tools be based formally on the mathematial model. The toolsshould be aompanied by theory to explain their operation, for example, theo-rems about the orretness of program transformations and theorems about theorretness and performane of generated ode.
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Using I/O Automata for Developing Distributed Systems 301Not all tools need to be apable of proessing the full IOA language. Some toolsmay only proess restrited forms of programs, with the user responsible for trans-forming programs into the restrited forms.y This approah allows users to expresstheir designs in the general IOA language, yet still utilize tools, like simulators andmodel hekers, that require restritions. In partiular, we believe that the usershould help resolve sheduling deisions and other forms of nondeterministi hoiewhen submitting a program to a simulator or ode generator.The most important use of the validation tools will be for heking safety proper-ties. In fat, we propose de-emphasizing liveness properties in favor of onsideringtime bounds, whih yield sharper information, an be expressed formally as safetyproperties, and an be handled using standard assertional methods.yThe entire toolset, exept for the theorem prover, should be usable by skilledprogrammers. Use of the theorem prover will require a fair amount of skill in logiand formal methods. 13.6.2 Basi Support ToolsThe basi tools for IOA inlude a front end , onsisting of a parser and stati se-manti heker, whih produes an internal representation suitable for use by theother (bak-end) tools. Other basi tools support strutured system desriptionsusing omposition and levels of abstration.To support omposition, a omposer tool onverts the desription of a ompositeautomaton into primitive form by expliitly representing its ations, states, tran-sitions, and tasks. The input to the omposer must be a ompatible olletion ofautomata, whih means, for example, that the omponent automata must have noommon output ations. (This ompatibility an be veri�ed using other tools|insimple ases, the stati semanti heker, and in more ompliated ases, a theoremprover.) In the resulting automaton desription, the name of a state variable ispre�xed with the names (or handles) of the omponents from whih it arises.To support levels of abstration, the tools provide failities for de�ning and usingsimulation relations. When users argue that one automaton A implements anotherautomaton B, they normally expet to supply a prediate relating the states of Aand B. We think it is reasonable to expet the user to supply more, in partiular,information relating steps of the two automata. Suh information an be used by atheorem prover in establishing the orretness of a simulation relation (see Setion13.6.3), or by a simulator in testing its orretness (see Setion 13.6.4).For example, to show that a relation R is a forward simulation from A to B, theuser an de�ne, for eah step (sA; �; s0A) of A (arising from a given TD), and foreah state sB of B suh that (sA; sB) 2 R, a \orresponding" exeution fragmenty We use \user" to denote the user of the toolset, that is, the system designer, programmer, or programvalidator.y Inorporating time bounds formally into IOA requires an extension to timed I/O automata, whih isbeyond the sope of this paper.



www.manaraa.com

302 Garland and Lynhof B. One way he/she an speify this fragment is by providing, as a funtion ofthe given step and state, (a) a sequene of TDs of B, and (b) a way of resolvingthe expliit nondeterministi hoies (those represented by hoose statements andparameters) in those TDs. This funtion an be desribed using ases, based ona user-de�ned lassi�ation of the steps of A. To resolve nondeterministi hoies,the user an supply subroutines. The programming environment provides an APIfor use in de�ning suh step orrespondenes.It is not always lear how to de�ne the needed exeution fragment solely as afuntion of the given step and state. For example, the de�nition of the fragmentmight depend on expliit nondeterministi hoies or on the outomes of onditionaltests in the step of A. In suh ases, the user an add history variables to A to reordthe relevant hoies, and use the values of these variables in state s0A in de�ning thefragment. The tools support the addition of suh history variables.We have implemented the front end already. Chefter's Master's Thesis [Che98℄desribes a design for the omposer. Neither the omposer nor support for levels ofabstration has been implemented yet.13.6.3 Interfaes to Proof ToolsThe toolset inludes interfaes to existing theorem provers. The IOA language wasdesigned for easy translation into axioms that an be used by interative theoremprovers. In this translation, all imperative statements in the e�ets of TDs, inludingassignment statements, hoose statements, onditionals, and loops, are replaed byprediates relating poststates to prestates, and similarly for initial state desriptions.Other axioms are derived from formal de�nitions of the data types used in theautomata.Theorem provers an be used to prove validity properties for IOA programs andother user inputs (for example, that the set of hoies for a nondeterministi as-signment is nonempty, that automata being omposed do not share output ations,or that ations spei�ed by the user of the simulator are enabled) in ases wherethe properties are too hard to establish by stati heking. Theorem provers analso be used to prove properties of data types used in automata, invariants of au-tomata, and simulation relations between automata. Theorem provers must be ableto proess programs written in the full IOA language.For example, showing that a relation R is a forward simulation from A to B in-volves showing a relationship between the start states of A and B and a relationshipbetween the steps of A and B. The latter asserts, for eah step of A and eah stateof B that is R-related to the pre-state in A, the existene of a \orresponding"fragment of B. Proving suh an existene statement automatially is diÆult fortheorem provers, so the interfae an ask the user to help by supplying expliit steporrespondene information, as desribed in Setion 13.6.2. The user an then usethe theorem prover to verify that the spei�ed sequene satis�es the requirements
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Using I/O Automata for Developing Distributed Systems 303for a forward simulation: that the sequene is really an exeution fragment, that ithas the same external behavior as the given step, and that the �nal states are relatedby R. Our experiene with proofs of distributed algorithms indiates that suh steporrespondene information greatly redues the amount of interation needed forthe theorem prover to omplete its work.Initially, we are developing an interfae to the Larh Prover. We have designed atranslation sheme from IOA desriptions into LSL and used it manually to provethe invariants and simulation relations shown in Setion 13.4 [GL98℄. We have for-malized the translation sheme (f. [GLV97℄) and are in the proess of implementingit. Meanwhile, Devillers, working with Vaandrager, is writing a translation fromIOA desriptions to the input language of PVS [Dev99℄.The toolset also inludes interfaes to existing model hekers. These interfaesonly handle a restrited lass of IOA programs. Although programs an be non-deterministi, they must be written in an imperative style and use only those datatypes provided by the model heker's input language.So far, Vaziri has written a preliminary translation from a restrited lass of IOAprograms into Promela, the input language of the Spin model heker [Hol91℄.13.6.4 SimulatorThe simulator runs sample exeutions of an IOA program on a single mahine,allowing the user to help selet the exeutions. The simulator is used mainly forheking proposed invariants and simulation relations.yThe simulator requires that IOA programs be transformed into a restrited form.The biggest problem in this transformation is resolving nondeterminism, whih ap-pears in IOA in two ways: expliitly , in the form of hoose onstruts in statevariable initializations and TD e�ets, and impliitly , in the form of ation shedul-ing unertainty. The restrited form rules out both types of nondeterminism. Wealso assume that an IOA program submitted to the simulator is losed (that is,has no input ations) and is written in an imperative style. At most one (loallyontrolled) ation may be enabled in any state; moreover, the user is expeted todesignate that ation, as a funtion of the urrent state.The tools provide support for getting programs into the required form. For ex-ample, the omposer an be used to \lose" an automaton by omposing it with auser-de�ned \environment automaton" (like Env in Setion 13.4.1). To resolve ex-pliit nondeterminism, the system an generate probabilisti hoies. Alternatively,the system an ask the user to provide expliit hoies, for example, by adding astate variable ontaining a pseudo-random sequene and replaing nondeterministihoies by suessive elements of this sequene. The theorem prover an be usedto hek that the provided hoies satisfy any required onstraints, expressed bywhere lauses, preonditions, and other prediates.y There is an unfortunate lash of terminology here, between \simulator" and \simulation relation."
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304 Garland and LynhTo remove impliit nondeterminism, the system an ask the user to onstrain theautomaton so only one ation is enabled in eah state; the user an do this, forexample, by adding state variables ontaining sheduling information, adding extrapreonditions for ations that involve the new variables, and adding new statementsto the e�ets of ations to maintain the sheduling variables. The user should alsoprovide a funtion that expliitly designates the next ation to be simulated, as afuntion of the urrent state, in the form of a TD plus expressions giving values forthe ation's parameters. The programming environment provides an API for usein writing these funtions, and the theorem prover an be used to verify that thedesignated ation is enabled.For example, if a set of ations is to be exeuted in round-robin order, then asheduling variable an keep trak of the (index of the) next ation to be performed,the preondition of eah ation an be augmented with a lause saying that theindiated ation is the one reorded by this variable, and the e�et of eah ationan inrement the index maintained by the variable. This strategy removes thesheduling nondeterminism, and an expliit funtion of the state desribes the nextation to be performed.In order to simulate data type operations, whih are de�ned axiomatially inIOA, the simulator needs atual ode. For operations de�ned by IOA's built-in datatypes, the simulator uses ode from lass libraries written in a standard sequentialprogramming language like C++ or Java. For operations (like totalAmount inSetion 13.4) de�ned in auxiliary LSL spei�ations, the user an hoose either towrite these spei�ations in an exeutable algebrai style or to supply handwrittenode. Although we do not plan to prove the orretness of this handwritten ode,suh proofs ould be arried out using tehniques of sequential program veri�ation.With all nondeterminism removed, the simulator's job is easy: starting from theunique initial state, it repeatedly performs the unique enabled ation. That is, ituses the user-provided funtion to determine the next TD and parameter values,then exeutes that TD with those parameter values. Sine there is no expliitnondeterminism, this uniquely determines the next state.The simulator an be used to hek that proposed invariants are true in all statesthat arise in the simulated exeutions. It an also hek that a andidate relation Rappears to be a simulation relation from A to B by performing a paired simulationof A and B, that is, by produing an exeution of A as usual and using it togenerate a orresponding exeution of B. Spei�ally, for eah simulated step ofA, the simulator uses a user-spei�ed step orrespondene (see Setion 13.6.2) toobtain a (proposed) exeution fragment of B, then runs the steps of that exeutionfragment. As it runs those steps, the simulator heks that ation preonditionsare satis�ed, that values used to resolve expliit nondeterministi hoies satisfy therequired onstraints, that the fragment has the same external behavior as the givenstep, and that the relation R holds between the states of the two automata afterthe step and fragment.
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Using I/O Automata for Developing Distributed Systems 305Chefter's Master's Thesis [Che98℄ ontains a detailed design for the basi simu-lator; she has also written a preliminary implementation in Java and produed asmall library of hand-oded data type implementations. More reently, Ramirez hasimproved the simulator, this time starting from the intermediate language desribedin Setion 13.6.2. It remains to enhane this newer version with more advaned a-pabilities, inluding the resolution of expliit and impliit nondeterministi hoiesand support for paired simulations.13.6.5 Code GeneratorNearly all of the issues that arise in the simulator arise also for the ode generator.New issues also arise beause of distribution, the need to interat with externallyprovided ommuniation servies, and the need for good runtime performane.The ode generator generates real ode for a target distributed system, whih maybe an arbitrary on�guration of omputing nodes and ommuniation hannels. Theode generation sheme works diretly from a low-level IOA language desriptionof the system design, whih an arise from a series of re�nements starting witha high-level spei�ation. This strategy allows the formal modeling and analysisfailities to be used to reason about the design until the last possible moment, whenit is transformed automatially into a working implementation. The veri�ationfailities an be used to ensure that the �nal implementation provably implementshigher-level IOA desriptions, subjet to assumed properties of externally providedservies, of hand-oded data type implementations, and of the underlying hardware.The ode generation sheme produes runnable versions of node automata thatan ommuniate via preexisting ommuniation servies suh as TCP or MPI[MPI95℄, whih are modeled by hannel automata. Node automata typially modela ombination of appliation-spei� ode and loal piees of ommuniation proto-ols. A key to making this sheme work is obtaining lear IOA spei�ations of realommuniation servies. Suh de�nitions may be obtained by formalizing existinginformal interfae desriptions and reasting them, if neessary, in terms of sharedations.The ode generator, like the simulator, relies on users to transform programs intoa speial form. As just desribed, programs provided as input to the ode generatormust math the given distributed system arhiteture. Node programs must alsosatisfy restritions like those required by the simulator, although they need not belosed. That is, they should inlude neither expliit nor impliit nondeterminism.As before, users should speify the next enabled ation, as a funtion of the state.We need another (tehnial) restrition to get a faithful system implementation.Atomiity requires that the e�et of eah transition our without interruption,even if inputs arrive from lients or ommuniation servies during its exeution. Inour design, suh inputs are bu�ered. In between running loally ontrolled ations,the generated program examines bu�ers for newly arrived inputs, and handles some
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306 Garland and Lynhor all of them by running ode for input ations. Sine this delays proessinginputs (with respet to when the orresponding outputs our), it may upset preiseimplementation laims for the node automata. Therefore, we restrit node programsin order to avoid this risk. Stated in its strongest, simplest form, our restritionis that eah node automaton A be input-delay-insensitive: its external behaviorshould not hange if its input ations are delayed and reordered before proessing.yIt is possible to weaken this requirement slightly, for example, requiring only thatexternal behavior be preserved in \well-formed" environments, for example, onlyfor bloking inputs. In this ase, the atual environments of the node automatamust satisfy these assumptions.As for the simulator, the tools provide help in getting programs into the speialform for the ode generator. The general tools that support programming usinglevels of abstration an be used to re�ne a design within the IOA frameworkuntil the required node-and-hannel form is reahed. IOA spei�ations for atualommuniation servies like TCP and MPI are maintained in a library. Support forremoving expliit (hoose) and impliit (sheduling) nondeterminism is similar tothat for the simulator. Like the simulator, the ode generator uses a library of datatype implementations.For eah node automaton, the ode generator performs a soure-to-soure transla-tion, translating the IOA ode into a program in a standard programming languagelike C++ or Java. This program performs a simple loop, similar to the one per-formed by the simulator, exept that it polls and handles input ations in betweenproessing loally ontrolled ations. The ode generator may translate the ode atdi�erent nodes into di�erent programming languages.By insisting that IOA programs from whih we generate ode math the avail-able omputing hardware and ommuniation servies, and by requiring the nodeprograms to tolerate input delays, we an ahieve a faithful implementation with-out using any nonloal synhronization, suh as that required by earlier designs[Gol91, Che97℄.Abstrat Channels Before using the ode generator, it is often helpful to desribea system design as a omposition of appliation automata Ai and high-level abstrathannel automata Cij . Eah Cij is, in turn, implemented by lower-level automataDij and Dji, representing real hannels, omposed with protool automata Pij andPji. For example, an abstrat FIFO send/reeive hannel an be implemented interms of an MPI servie and an IOA protool [Tau℄. At this lower level of design, anode automaton Ni is, formally, the omposition of the appliation automaton Aiand all the protool automata Pij (for node i) that appear in the hannel imple-mentations. It is this omposed automaton Ni that the ode generator translatesy Formally, traes(A0 � Bu�) must be a subset of traes(A), where A0 is like A exept that its inputs arerenamed to internal versions, and Bu� is a possibly-reordering delay bu�er that takes the real inputsand delivers them later in their internal versions.
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Using I/O Automata for Developing Distributed Systems 307into a standard programming language. Figure 13.1 illustrates this design; in this�gure, the omposed automata Ni are enirled by dotted lines.
1

A A

D

D

A

D

2

3

D
31

D
13

12

21

D
32

23

12

C

31C
23C

Fig. 13.1. An Implementation Using Abstrat Channels Implemented by Real Channels.Abstrat hannels provide exibility: di�erent abstrat hannels an be used withthe same distributed system arhiteture, and the same abstrat hannels an beused with di�erent arhitetures. The tools support programming with abstrathannels by maintaining libraries of IOA desriptions of abstrat and real hannels,and libraries of IOA implementations of abstrat hannels in terms of real hannels.The tools an also assist in proving the orretness of implementations of abstrathannels.Status of Code Generation Tauber has de�ned IOA models for external systemservies, inluding the onsole and a subset of MPI funtions. In a �rst projet onabstrat hannels, he has de�ned a protool that implements reliable FIFO hannelson top of MPI and proved the orretness of this protool [Tau℄. He has hand-translated sample distributed IOA programs using abstrat hannels into Java,and he has built an initial version of the ode generator for a restrited subsetof IOA, using MPI with a Java wrapper [BCF+99℄. This initial version resolvesation-sheduling nondeterminism using a simple round-robin sheduler.Tauber and Tsai, with help from Ramirez and Reimers, are urrently working ona reimplementation of the ode generator. This version takes the IOA intermediatelanguage as input instead of the soure ode, uses a exible ation sheduler, and
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308 Garland and Lynhdoes not restrit the use of ation parameters, as does the initial version. The newversion is onstruted as a series of program transformations that use the omposerand remove various kinds of nondeterminism.13.7 ConlusionsIt must still be shown that distributed ode with aeptable performane an beobtained using IOA. We have many reasons for believing it an. First and foremost,our strategy works loally, without synhronizing any ativities involving more thanone mahine. Also, the ode-generation proess inorporates existing servies (forexample, ommuniation servies), whih may be highly optimized. Also, we allowhand oding of data type implementations in a standard sequential programminglanguage, whih provides many opportunities for optimization.We think that giving the user exibility in ontrolling the order in whih ationsof a loal node program are performed will yield more eÆient shedules than wouldarise from having a �xed sheduling disipline. Allowing the sheduler to all a user-provided funtion to determine the next ation should derease runtime overhead.Proving some properties statially should save the expense of some runtime heks.Soure-to-soure translation to C++ or other languages allows the use of opti-mizing ompilers for those languages. Also, IOA is suÆiently exible to be usedat di�erent levels of abstration, inluding a very low level that an permit detailedoptimization within IOA itself.Many researh problems remain. For theorem prover support, an interestingproblem is to devise speialized proof strategies for proving invariants, simulationrelations, and IOA program validity properties, in order to redue the amount ofinteration needed in proofs. For model heker support, it would be useful toaugment existing model hekers with additional data types so they an express alarger lass of IOA programs. Also, one ould develop support for exploring re-strited subsets of an automaton's exeution (for example, based on limiting theamount of asynhrony) in situations where the full automaton is too large to modelhek. Another interesting problem is to develop support for model heking pro-posed simulation relations, based on the notion of paired simulation desribed inSetion 13.6.4. For the simulator, it would be useful to improve the support for re-solving impliit nondeterminism by developing a library of built-in shedulers, andto develop an API to help users onstrut new shedulers.For the ode generator, researh will be needed on improving performane andusability. For example, the target ode for node programs ould use multithreadingto improve performane; however, this would make atomiity of ations harderto ensure and introdue onurreny ontrol issues. Additional support for theuser in resolving impliit and expliit nondeterminism ould be developed. A moresophistiated, easier-to-use sheduling faility ould be developed and integratedinto the toolset.
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